[1] 杨培凯,石雄,李林. 基于图像传感器和无线传感网络的粮虫监测[J]. 电子与封装, 2015, 15(10): 44-8. [2] 刘红雨,李姗泽,王颖麟,等. 基于LTCC技术的无源气压传感器研制[J]. 电子与封装, 2017, 17(5): 5-7,15. [3] 张艳飞,曹正州. 一种集成于系统芯片的低功耗温度传感器设计[J]. 电子与封装, 2020, 20(11): 41-6. [4] CABOT J M, BREADMODE M C, PAULL B. Thread based electrofluidic platform for direct metabolite analysis in complex samples[J]. Analytica Chimica Acta, 2018, 1000: 283-292. [5] FU L M, WANG Y N, LIU C C. An integrated microfluidic chip for formaldehyde analysis in Chinese herbs[J]. Chemical Engineering Journal, 2014, 244: 422-428. [6] LIU C C, WANG Y N, FU L M, et al. Microfluidic paper-based chip platform for formaldehyde concentration detection[J]. Chemical Engineering Journal, 2018, 332: 695-701. [7] BIAN R X, WU X T, CHAI F, et al. Facile preparation of fluorescent Au nanoclusters-based test papers for recyclable detection of Hg2+ and Pb2+[J]. Sensors and Actuators B: Chemical, 2017, 241: 592-600. [8] PENG G L, HE Q, LU Y, et al. Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr(III) and Cr(VI) in water samples after solid phase extraction[J]. Analytica Chimica Acta, 2017, 955: 58-66. [9] PALLAORO A, HOONEJANI M R, BRAUN G B, et al. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel[J]. ACS Nano, 2015, 9(4): 4328-4336. [10] ZHAI Z M, ZHANG F Q, CHEN X Y, et al. Uptake of silver nanoparticles by DHA-treated cancer cells examined by surface-enhanced Raman spectroscopy in a microfluidic chip[J]. Lab on a chip, 2017, 17(7): 1306-1313. [11] ZHAI Z M, NIE M Y, GUAN Y, et al. A microfluidic surface-enhanced Raman spectroscopy approach for assessing the particle number effect of AgNPs on cytotoxicity[J]. Ecotoxicolgy and Environmental Safety, 2018, 162: 529-35. [12] QU L L, LIU Y Y, HE S H, et al. Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells[J]. Biosens Bioelectron, 2016, 77: 292-298. [13] 周昊,杨正. 基于耦合微流控芯片的可逆式铵检测及其影响因素研究[J]. 光谱学与光谱分析,2019, 39(12): 3749-54. [14] XIE G L, YU H, DENG M H, et al. A colorimetric microfluidic sensor made by a simple instrumental-free prototyping process for sensitive quantitation of copper[J]. Chemical Papers, 2019, 73(6): 1509-1517. [15] XIA Y Q, CHEN Y Z, TANG Y M, et al. Smartphone-based point-of-care microfluidic platform fabricated with a ZnO nanorod template for colorimetric virus detection[J]. ACS Sensors, 2019, 4(12): 3298-3307. [16] DENG M H, LIAO C H, WANG X F, et al. A paper-based colorimetric microfluidic sensor fabricated by a novel spray painting prototyping process for iron analysis[J]. NRC Research Press, 2019, 97(5): 373-377. [17] KONG Q K, WANG Y H, ZHANG L N, et al. A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A[J]. Sensors and Actuators B: Chemical, 2017, 243: 130-136. [18] LIU C Y, Gomez F A. A microfluidic paper-based device to assess acetylcholinesterase activity[J]. Electrophoresis, 2017, 38(7): 1002-1006. [19] ARRASTIA M, AVOUNDJIAN A, EHRLICH P S, et al. Development of a microfluidic-based assay on a novel nitrocellulose platform[J]. Electrophoresis, 2015, 36(6): 884-888. [20] GONZALEZ A, ESTALA L, GAINES M, et al. Mixed thread/paper-based microfluidic chips as a platform for glucose assays[J]. Electrophoresis, 2016, 37(12): 1685-1690. [21] AVOUNDJIAN A, JALALI-HERAVI M, GOMEZ F A. Use of chemometrics to optimize a glucose assay on a paper microfluidic platform[J]. Anal Bioanal Chem, 2017, 409(10): 2697-2703. [22] KUDO H, MAEJIMA K, HIRUTA Y, et al. Microfluidic paper-based analytical devices for colorimetric detection of lactoferrin[J]. SLAS Technol, 2020, 25(1): 47-57. [23] LUO J J, WANG Z K, LI Y, et al. Durable and flexible Ag-nanowire-embedded PDMS films for the recyclable swabbing detection of malachite green residue in fruits and fingerprints[J]. Sensors and Actuators: B. Chemical, 2021, 347: 130602. [24] XU H Y, LIAO C, ZUO P, et al. Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes[J]. Analytical Chemistry, 2018, 90(22): 13451-13458. [25] TOWNSEND A D, SPRAGUE R S, MARTIN R S. Microfluidic device using a gold pillar array and integrated electrodes for on-chip endothelial cell immobilization, direct RBC contact, and amperometric detection of nitric oxide[J]. Electroanalysis, 2019, 31(8): 1409-1415. [26] JEMMELI D, MARCOCCIO E, MOSCONE D, et al. Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A[J]. Talanta, 2020, 216: 120924. [27] KOO Y, SANKAR J, YUN Y. High performance magnesium anode in paper-based microfluidic battery, powering on-chip fluorescence assay[J]. Biomicrofluidics, 2014, 8(5): 054104. [28] WANG Y, XU H R, LUO J P, et al. A novel label-free microfluidic paper-based immunosensor for highly sensitive electrochemical detection of carcinoembryonic antigen[J]. Biosensors and Bioelectronics, 2016, 83: 319-26. [29] CINTI S, BASSO M, MOSCONE D, et al. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers[J]. Analytica Chimica Acta, 2017, 960: 123-130. [30] EDITORS N R, STATED R. Research conducted at university of minnesota has updated our knowledge about chemistry (a disposable planar paper-based potentiometric ion-sensing platform)[J]. Chemicals & Chemistry, 2016. [31] 于涵,尹坦姬,丁家旺,等. 基于纸芯片的离子选择性电极系统检测海水中钙离子[J]. 分析试验室,2018, 37(8): 889-892. [32] KRIVOSUDSKY O, HAVELKA D, CHAFAI D E, et al. Microfluidic on-chip microwave sensing of the self-assembly state of tubulin[J]. Sensors and Actuators B: Chemical, 2021, 328. [33] YANG J J, GAO P C, LIU Y X, et al. Label-free photoelectrochemical immunosensor for sensitive detection of Ochratoxin A[J]. Biosensors and Bioelectronics, 2015, 64: 13-18. [34] LYU Z Z, LIU J C, BAI W H, et al. A simple and sensitive label-free fluorescent approach for protein detection based on a Perylene probe and aptamer[J]. Biosensors and Bioelectronics, 2015, 64: 530-534. [35] HAWK R M, ARMANI A M. Label free detection of 5'hydroxymethylcytosine within CpG islands using optical sensors[J]. Biosensors and Bioelectronics, 2015, 65: 198-203. [36] GULIY O I, ZAITSEV B D, SMIRNOV A V, et al. Sensor for ampicillin based on a microwave electrodynamic resonator[J]. Biosensors and Bioelectronics, 2019, 130: 95-102. [37] QI W, ZHENG L, WANG S, et al. A microfluidic biosensor for rapid and automatic detection of Salmonella using metal-organic framework and Raspberry Pi[J]. Biosensors and Bioelectronics, 2021, 178: 113020. [38] ETAYASH H, KHAN M F, KAUR K, et al. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes[J]. Nature Communications, 2016(7): 12947. [39] NARANG R, MOHAMMADI S, ASHANI M M, et al. Sensitive, real-time and non-intrusive detection of concentration and growth of pathogenic bacteria using microfluidic-microwave ring resonator biosensor[J]. Scientific Reports, 2018, 8(1): 15807. [40] LIU C F, WANG M H, JANG L S. Microfluidics-based hairpin resonator biosensor for biological cell detection[J]. Sensors and Actuators B: Chemical, 2018, 263: 129-136. [41] HUANG P C, LIU C F, CHEN R Q. A microwave resonator biosensors for biological cell trapping in portable biomedical application[C]// 2017 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 2017. [42] GUO J, LI C M, KANG Y. PDMS-film coated on PCB for AC impedance sensing of biological cells[J]. Biomed Microdevices, 2014, 16(5): 681-686. [43] KILPIJARVI J, HALONEN N, JUUTI J, et al. Microfluidic microwave sensor for detecting saline in biological range[J]. Sensors (Basel), 2019, 19(4): 1-14. [44] KIM J, BABAJANYAN A, HOVSEPYAN A, et al. Microwave dielectric resonator biosensor for aqueous glucose solution[J]. Review of Scientific Instruments, 2008, 79(8): 086107. [45] CHRETIENNOT T, DUBUC D, GRENIER K. Microwave-based microfluidic sensor for non-destructive and quantitative glucose monitoring in aqueous solution[J]. Sensors (Basel), 2016, 16(10): 1-7. [46] VELEZ P, GRENIER K, MATA-CONTRERAS J, et al. Highly-sensitive microwave sensors based on open complementary split ring resonators (OCSRRs) for dielectric characterization and solute concentration measurement in liquids[J]. IEEE Access, 2018(6): 48324-48338. [47] EBRAHIMI A, SCOTT J, GHORBANI K. Microwave reflective biosensor for glucose level detection in aqueous solutions[J]. Sensors and Actuators A: Physical, 2020, 301: 111662. [48] AWANG R A, TOVAR-LOPEZ F J, BAUM T, et al. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids[J]. Journal of Applied Physics, 2017, 121(9): 094506. [49] SHIH K, PITCHAPPA P, MANJAPPA M, et al. Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles[J]. Journal of Applied Physics, 2017, 121(2): 023102. [50] AYDIN S, REZAEI N H, SAMEER S. Low-cost metamaterial-on-paper chemical sensor[J]. Optics Express, 2017, 25(14): 16092.
最新录用说明: 此版本为经同行评议被本刊正式录用的文章。其内容、版式可能与正式出版(印刷版)稍有差异,正式出版后此版本会更新,请以正式出版版本为准。本文已确定卷期、页码以及DOI,可以根据DOI引用。 本文尚未正式出版,未经许可,不得转载。
|