[1] 马福民,王惠. 微系统技术现状及发展综述[J].电子元件与材料,2019,38(6):12-19. [2] Heterogeneous Integration Roadmap. Chapter 1: HIR overview and executive summary[J]. Heterogeneous Integration Roadmap, 2019 Edition. [3] PU H P, KUO H J, LIU C S, et al. A novel submicron polymer re-distribution layer technology for advanced InFO packaging[C]// 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018, pp. 45-51 [4] Zhou J, Cao X, Zhang N, et al. Micro-channel heat sink: a review[J]. Journal of Thermal Science, 2020, 29(6):1431-1462. [5] Fu Z W, Zhou B, Yao R, et al. Research on thermal-electric coupling effect of the copper pillar bump in the flip chip packaging[C]// 2016 17th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2016. [6] 陈思. 三维电子封装关键结构TSV-Cu的胀出行为研究[D].北京:北京工业大学,2017. [7] Dou H, Yang M, Chen Y, et al. Analysis of the structure evolution and crack propagation of Cu-filled TSV after thermal shock test[C]// 2017 18th International Conference on Electronic Packaging Technology (ICEPT). 2017. [8] Gambin V, Poust B, Ferizovic D, et al. Impingement cooled embedded diamond multiphysics co-design[C]// 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2016. [9] 李逵,张庆学,张欲欣,等. TSV结构SiP模块的等效建模仿真与热阻测试[J].半导体技术,2020,45 (12):982-987. [10] Schmidt C, Altmann F, Naumann F, et al. Application of lock-in-thermography for 3D defect localisation in complex devices[C]// 2008 IEEE 2nd Electronics System Integration Technology Conference. IEEE, 2008. [11] PavlidisG, Yates L, Kendig D, et al. Thermal performance of GaN/Si hemts using near-bandgap thermoreflectance imaging[J]. IEEE Transactions on Electron Devices, 2020(99):1-6. [12] ZHANG J Y, ZHOU B, LI G Y. Study on predicting the temperature of stacked chip based on thermal resistance matrix[C]// 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2017. [13] Kuball M, Pomeroy J, et al. A review of raman thermography for electronic and opto-electronic device measurement with submicron spatial and nanosecond temporal resolution[J]. IEEE Transactions on Device & Materials Reliability, 2016. [14] Chen S, En Y F, Li G Y, et al. An ion beam layer removal method of determining the residual stress in the as-fabricated TSV-Cu/TiW/SiO2/Si interface on a nanoscale[J]. Microelectronics Reliability, 2020(112): 113826.1-113826.7. [15] Xiao H, Wang F, Wang Y, et al. Effect of ultrasound on copper filling of high aspect ratio through-silicon via (TSV)[J]. Journal of The Electrochemical Society, 2017, 164(4): D126-D129. [16] JiangT, Ryu S K, Qiu Z, et al. Measurement and analysis of thermal stresses in 3-D integrated structures containing through-silicon-vias[J]. Microelectronics Reliability, 2013, 53(1):53-62. [17] Winiarski B, Withers P J. Micron-scale residual stress measurement using micro-hole drilling and digital image correlation[J]. Springer New York, 2013. [18] Rangaswamy P, Griffith M L, Prime M B, et al. Residual stresses in LENS components using neutron diffraction and contour method[J]. Materials Science & Engineering A, 2005, 399(1-2):72-83. [19] Charitidis c a, Dragatogiannis D A Koumoulos E P, et al. Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation[J]. Materials Science & Engineering A, 2012. [20] DixitetP, Sun Y, Miao J, et al., Numerical and experimental investigation of thermomechanical deformation in high-aspect-ratio electroplated through silicon vias[J]. Journal of the Electrochemical Society, 2008, 155(12): H981-H986. [21] Qiu W, Cheng C L, Liang R R, et al. Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy[J]. Acta Mech Sin 2016;32(5):805-12. [22] Di Y X, Ji X H, Hu M, et al. Residual stress measurement of porous silicon thin film by substrate curvature method[J]. Key Engineering Materials, 2006, 326-328(Pt1):223-226. [23] Feng X, Cao H Y, Yu H, et al. Study of internalstress on electroplating copper used in through silicon viafilling [C]// Proceedings of the 2011 International Conference on Electronic Packaging Technology and HighDensity Packaging, Shanghai, China, 2011: 1018-1021. [24] WuC L, Huang R, Liechti K. Characterizing interfacial sliding of through-silicon-via by nano-indentation[J]. IEEE Transactions on Device and Materials Reliability, 2017, 17(2), 355-363. [25] Qiu M, Li E-P, Jin J-M, et al. Electrical–thermal cosimulation of coaxial TSVs with temperature-dependent MOS effect using equivalent circuit models[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(5): 2247 – 2256. [26] 缪旻,刘欢. 硅通孔互连通道噪声评估与抑制方法[J].安全与电磁兼容,2020(4): 15-19. [27] Ndip I, Zoschke K, L?bbicke K, et al. Analytical, numerical-, and measurement-based methods for extracting the electrical parameters of through silicon vias (TSVs)[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(3): 504-515. [28] Wang H, Xiao T, Huang D R, et al. Runtime stress estimation for three-dimensional IC reliability management using artificial neural network[C]. ACM Transactions on Design Automation of Electronic Systems (TODAES), 2019. [29] Ding B, Zhang Z H, Gong L, et al. A novel thermal management scheme for 3D-IC chips with multi-cores and high power density[J]. Applied Thermal Engineering 168.5(2020):114832. [30] Deny J, Raja R, Sudharsan. Block rearrangements and TSVs for a standard cell 3D IC placement[M]. Intelligent Computing and Innovation on Data Science. Springer, Singapore, 2020: 207-214. [31] Mannsfeld S C B, Tee B C K, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature materials, 2010, 9(10): 859-864. [32] Kim J, Lee M, Shim H J, et al. Stretchable silicon nanoribbon electronics for skin prosthesis[J]. Nature communications, 2014, 5(1): 1-11. [33] 贾异,卞曙光. 柔性电子技术发展现状及趋势[J].科技中国,2021(01):17-20. [34] 张墅野,杜轩宇,林铁松. PTC封装结构热管理模拟研究[J]. 电子与封装, 2020, 20(12):120202. 陈 思(1989—),女,吉林长春人,博士,高级工程师,主要研究方向为先进封装与微系统中微互连失效机理与可靠性评价。
|