[1] WEI B J, LUO W M, DU J Y, et al. Thermal interface materials: From fundamental research to applications[J]. SusMat, 2024, 4(6): e239. [2] KUMAR SWAMY M C, SATYANARAYAN K N. A review of the performance and characterization of conventional and promising thermal interface materials for electronic package applications[J]. Journal of Electronic Materials, 2019, 48(12): 7623-7634. [3] GOEL N, BHATTACHARYA A, CERVANTES J A, et al. Technical review of characterization methods for thermal interface materials (TIM)[C]// 2008 10th Electronics Packaging Technology Conference, Singapore, 2008: 1461-1471. [4] CHEN S, DENG Z S, LIU J. High performance liquid metal thermal interface materials[J]. Nanotechnology, 2021, 32(9): 092001. [5] 唐波, 相利学, 代旭明, 等. 金刚石导热复合材料的研究进展[J]. 中国塑料, 2024, 38(8): 125-131. [6] ZHANG H Y, CHE F X, LIN T Y, et al. Modeling, analysis, design, and tests for electronics packaging beyond moore[M]. Duxford: Woodhead Publishing, 2020. [7] 杨宇军, 李逵, 石钰林, 等. 微电子封装热界面材料研究综述[J]. 微电子学与计算机, 2023, 40(1): 64-74. [8] SWANSON T. NASA’s new thermal management systems roadmap; what’s in it, what it means[EB/OL]. [2025-1-22]. https://ntrs.nasa.gov/citations/20160003582. [9] GUO Y, ZHOU Y J, XU Y F. Engineering polymers with metal-like thermal conductivity: present status and future perspectives[J]. Polymer, 2021, 233: 124168. [10] JEONG I, KIM C B, KANG D, et al. Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole-dipole interactions[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2019, 57(6): 708-715. [11] ZULKARNAIN M, FADZIL M A, MARIATTI M, et al. Effects of silver microparticles and nanoparticles on thermal and electrical characteristics of electrically conductive adhesives[J]. Journal of Electronic Materials, 2017, 46(11): 6727-6735. [12] SU Y P, MA Q Q, LIANG T, et al. Optimization of effective thermal conductivity of thermal interface materials based on the genetic algorithm-driven random thermal network model[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 45050-45058. [13] BAR-COHEN A, MATIN K, NARUMANCHI S. Nanothermal interface materials: technology review and recent results[J]. Journal of Electronic Packaging, 2015, 137(4): 040803. [14] LU J, MING X, CAO M, et al. Scalable compliant graphene fiber-based thermal interface material with metal-level thermal conductivity via dual-field synergistic alignment engineering[J]. ACS Nano, 2024, 18(28): 18560-18571. [15] WANG D Z, WEI H, LIN Y, et al. Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocomposites via filler-filler interface engineering[J]. Composites Science and Technology, 2021, 213: 108953. [16] BAI R X, WEI Y B, XU J Y, et al. Encapsulated carbon nanotube array as a thermal interface material compatible with standard electronics packaging[J]. Nano Research, 2023, 16(8): 11389-11400. [17] DING D L, SHANG Z H, ZHANG X, et al. Greatly enhanced thermal conductivity of polyimide composites by polydopamine modification and the 2D-aligned structure[J]. Ceramics International, 2020, 46(18): 28363-28372. [18] SU Y P, LI J H, MA Q Q, et al. Reliability and thermal degradation of first-level thermal interface materials[C]//2021 22nd International Conference on Electronic Packaging Technology (ICEPT). Xiamen, China: IEEE, 2021: 1-5. [19] NORDSTOG T, HENRY C, NELSON C, et al. Junction to case thermal resistance variability due to temperature induced package warpage[C]// 2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), San Jose, CA, USA, 2017: 235-245. [20] SUN D C, YOU E S, ZHANG T, et al. A review of thermal contact conductance research of conforming contact surfaces[J]. International Communications in Heat and Mass Transfer, 2024, 159: 108065. [21] 宣益民, 李强, 张平. 高温条件下的固-固界面接触热阻测试方法与系统[J]. 中国科学: 技术科学, 2019, 49(05): 491-500. [22] STADLER R, MAURER A. Methods for durability testing and lifetime estimation of thermal interface materials in batteries[J]. Batteries, 2019, 5(1): 34. [23] WU Z L, WEI X X, WANG Z Q, et al. Organic thermal interface materials delamination analysis of large size FCBGA package during reflow process[C]// 2023 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Pulau Pinang, Malaysia, 2023: 1-6. [24] MCCLURE P, RICHMOND D, POLIKS M, et al. Novel TIM evaluation method with in situ electrical monitoring[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(2): 171-176. [25] JAVANBAKHT F, RAZAVI B, SALAMI-KALAJAHI M, et al. One-pot synthesis of organo-silica hybrids with high thermal properties via a simple sol–gel process[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(5): 2267-2274. [26] YE Z Q, XU J B, MA J K, et al. Aligned-carbon-fibre/silicone-rubber composite with high thermal conductivity fabricated by double-stacked electrostatic flocking method[C]// 2020 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 2020: 1-4. [27] ARMAGAN E, SAHA A, LIU K C, et al. Knowledge based qualification for thermal interface material reliability[C]// 2023 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2023: 1-7. [28] VAN DER BROECK C H, POLOM T A, DE DONCKER R W. Degradation diagnosis of power modules based on thermal phase response sensing and artificial neural networks[J]. IEEE Transactions on Industry Applications, 2024, 60(2): 3438-3448. [29] SINHA T, ZITZ J A, WAGNER R N, et al. Predicting thermo-mechanical degradation of first-level thermal interface materials (TIMs) in flip-chip electronic packages[C]// Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 2014: 240-250. [30] 王天伦, 秦文波, 黄飞, 等. 热界面材料可靠性能研究进展[J]. 高分子材料科学与工程, 2022, 38(7): 183-190. [31] 任晓雯, 孙敬文, 陈砚朋, 等. 有机硅基导热硅脂的改性及渗油机理研究[J]. 化工新型材料, 2019, 47(11): 134-136. [32] CHANO K, POLISKIE G M, FREGOSO J. Rheology of thermal interface materials composed of silicone gels[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(2): 217-220. [33] 刘晓云, 王文广, 王东, 等. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878. [34] LI Q, CONG L, ZHANG X S, et al. Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 211: 110511. [35] FAN B H, LIU Y, HE D L, et al. Enhanced thermal conductivity for mesophase pitch-based carbon fiber/modified boron nitride/epoxy composites[J]. Polymer, 2017, 122: 71-76. [37] ZHENG Y, ZHONG C, WANG H Z, et al. Reliability analysis of thermal interface materials (TIMs) in large size FCBGA package[C]// 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 2021: 1-4. [38] WU Z L, WANG Z Q, QI D, et al. Correlation analysis between warpage and metal thermal interface materials thermo-mechanical reliability of large size FCBGA[C]// 2023 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi City, China, 2023: 1-4.
|