[1] BAILEY C, FAN X J, BOTTOMS W R, et al. Heterogeneous integration roadmap[EB/OL]. (2019-09-19) [2021-05-06]. http://eps.ieee.org/hir. [2] TIMOTHY M H, JEFFREY C D, BOOZ A H. Heterogeneous and 3D integration at DARPA[C]// 2019 International 3D System Integration Conference(3DIC), 2019: 1-4. [3] ARDEN W. More-than-Moore white paper, ITRS roadmap[EB/OL]. [2021-05-06]. http://www.itrs2.net/uploads/4/9/7/7/49775221/irc-itrsmtm-v2_3.pdf. [4] RADOJCIC R. More-than-Moore 2.5D and 3D SiP integration[M]. West Berlin: Springer Publishing Company, 2017: 13-25. [5] GARROU P. DARPA envisions CHIPS as new approach to chip design and manufacturing[EB/OL]. (2018-10-17)[2021-04-30].https://www.3dincites.com/2018/10/iftle-396-darpa-envisions-chips-as-new-approach-to-chip-design-and-manufacturing/ [6] https://www.intel.com/content/www/us/en/architecture-and-technology/programmable/heterogeneousintegration/overview.html [7] fraunhofer-iis, electrinica-2018[EB/OL]. (2018-11-13)[2021-05-06]. https://www.iis.fraunhofer.de/en/muv/2018/electrinica-2018.html [8] BHATTACHARYA R, LOHANI J, GUPTA A, et al. Enabling chip, package and PCB system co-design and analysis in a heterogeneous integration environment-An EDA approach[C]// 2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON), 2019: 1-4. [9] HARB S, EISENSTADT W. Thermal evaluation of TSVs in 3D-integration technology[C]// 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC), 2019: 1-4. [10] JANG J G, SUK K L, LEE S H. Advanced RDL interposer PKG technology for heterogenous integration[C]// 2020 International Wafer Level Packaging Conference (IWLPC), 2020: 1-5. [11] CHOI W S, KWAK S K, KIM D Y. The SI/PI modeling and measurement of memory system by probing on top of DRAM package[C]// DesignCon, 2020. [12] HOSSEN M O, CHAVA B, BAKIR M S. Power delivery network (PDN) modeling for backside-PDN configurations with buried power rails and μTSVs[J]. IEEE Transactions on Electron Devices, 67(1): 11-17, 2020. [13] Kim J, Rahman N M, Dolatsara M A, et al. Silicon vs organic interposer: PPA and reliability tradeoffs in heterogeneous 2.5D chiplet integration[C]// 2020 IEEE 38th International Conference on Computer Design (ICCD), 2020: 80-87. [14] SHIUE G, AINé S. Rapid electro-thermal modeling for 3D integration using circuit simulation techniques[C]// 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), 2018:63-63. [15] LI Y S, LI E P, YU H, et al. Machine learning for 3D-IC electric-thermal simulation and Management[C]// 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), 2018: 1-3. [16] YAN X, ZHANG, ZHOU L. Calculations of temperature distributions for power MMICs in 3-D packages[C]// 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2020: 1-3. [17] CHEN Z. A general co-design approach to multi-level package modeling based on individual single-level package full-wave S-parameter modeling including signal and power/ground ports[C]// 2012 Electronic Components and Technology Conference (ECTC), 2012: 1687-1694. [18] DARRYL K, TAIGON S, SUNG K L. 3D IC-package-board co-analysis using 3D EM simulation for mobile applications[C]// 2013 Electronic Components & Technology Conference, 2013: 2113-2120. [19] 曾燕萍, 张景辉, 王梦雅, 等. DDR3堆叠键合组件的信号完整性分析与优化[J]. 电子与封装, 2020, 20(12): 120201. [20] OYMAN S. Electromagnetic wave propagation equations in 2D by finite difference method: mathematical case[C]// 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 2019: 1-5. [21] DEMENKO A, SYKULSKI J K. Analogies between finite-difference and finite-element methods for scalar and vector potential formulations in magnetic field calculations[J]. IEEE Transactions on Magnetics, 2016, 52(6): 1-6. [22] JIA P, HU J, ZHANG R, et al. Computations of electromagnetic wave scattering using FEM-BEM-DDM with H-matrices[C]// 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, USA, 2017: 1335-1336. [23] YU W, WANG X. Advanced field-solver techniques for RC extraction of integrated circuits[M]. Springer Science & Business, 2014: 73-86. [24] YU W J, SONG M Y, YANG M. Advancements and challenges on parasitic extraction for advanced process technologies[C]// 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC), 2021: 841-846. [25] WANG M Y, QIAN C, Yucel A C, et al. An FFT-accelerated and tucker-enhanced inductance extraction for voxelized superconducting structures[C]// 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 2020: 1049-1050. [26] LIU Q, SHAO Z, ZHANG Y, et al. A fast and accurate method for bond wires inductances extraction based on machine learning strategy[C]// 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), China, 2020: 1-3. [27] 姜立军,姚赫明,张欢欢,等. 开发EMC/SI/PI 的机器学习CEM方法[J]. 安全与电磁兼容, 2020(5): 9-15. [28] PENG Y, PETRANOVIC D, LIM S K. Chip/package co-analysis and inductance extraction for fan-out wafer-level-packaging[C]// 2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 2017: 1-3. [29] 陈思远,范鑫,蒋剑飞,等. 一种TSV阵列的串扰抑制设计方法[J].微电子学与计算机, 2018(7): 19-23. [30] QU C B, DING R X, ZHU Z M. High-frequency electrical modeling and characterization of differential TSVs for 3-D integration applications[J]. MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27(8): 721-723. [31] LIU X X, ZHU Z M, YANG Y T, et al. Electrical modeling and analysis of differential dielectric-cavity through-silicon-via array[J]. MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27(7): 618-620. [32] JIANG X H, SHI H. Effective die-package-PCB co-design methodology and its deployment in 10 Gbpsserial link transceiver FPGA packages[C]// 2009 IEEE MTT-S International Microwave Symposium Digest, 2009: 793-796. [33] ZHANG Y, Bakir M S. Integrated thermal and power delivery network co-simulation framework for single-die and multi-die assemblies[J]. IEEE Trans. Compon., Packag., Manuf. Technol., 2017,7(3): 434-443. [34] ZHANG Y, HOSSEN M O, BAKIR M S. Power delivery network benchmarking for interposer and bridge-chip-based 2.5-D integration[J]. IEEE Electron Device Letter, 2018, 39(1): 99-102. [35] HOSSEN M O, ZHANG Y, BAKIR M S. Thermal-power delivery network co-analysis for multi-die integration[C]// IEEE 27th Conf. Elect. Perform. Electron. Packag. Syst. (EPEPS), Oct. 2018: 155-157. [36] 秦海潮,阎照文,苏东林,等. 三维TSV集成电路电磁敏感性分析方法[J]. 北京航空航天大学学报, 2017,43(12): 2406-2415. [37] PENG Y, SONG T, PETRANOVIC D, et al. Silicon effect-aware full-chip extraction and mitigation of TSV-to-TSV coupling[J]. IEEE Transition of Computer-Aided Design for Integration Circuits System, 2014,33(12): 1900-1913. [38] 孟真,刘谋,张兴成,等. TSV封装中阻抗不连续差分互连结构宽频寄生参数建模研究[J]. 微电子学与计算机, 2017,34(08): 6-12. [39] PANT S. Design and analysis of power distribution networks in VLSI circuits[D]. Doctoral Dissertation, State of Michigan, University of Michigan, 2007. [40] YEUNG A, PARTOVI H, HARVARD Q, et al. A 3GHz 64b ARM v8 processor in 40nm bulk CMOS technology[C]// International Solid-State Circuit Conference (ISSCC), 2014: 110-111. [41] 张诚,周倩蓉,曾燕萍,等. 本征模在电源完整性分析中的应用[J]. 电子与封装, 2020, 20(3): 030305. [42] SHIDHARTHA D, PAUL W, DAVID B. Modeling and characterization of the system-level power delivery network for a dual-core ARM Cortex-A57 cluster in 28 nm CMOS[C]// Symposium on Low Power Electronics and Design, 2015: 146-151. [43] 苏浩航. 基于混合仿真对高速电路电源网络的优化设计[J]. 航天返回与遥感, 2017, 38(5):50-56. [44] SMITH L, SUN S H, BOYLE P, et al. System power distribution network theory and performance with various noise current stimuli including impacts on chip level timing[C]// IEEE 2009 Custom Intergrated Circuits Conference (CICC), 2009: 621-628. [45] 刘洋,夏建强,初秀琴. 利用有效去耦上升时间选择去耦电容的方法[J]. 西安电子科技大学学报. 2018, 45(04): 45-51. [46] HASHEMI A, CHEN G, KANG H S. Signal and power integrity co-simulation for high-density heterogenous multi-die design[C]// DesignCon, 2020. [47] CHANDRASEKAR K, ATTA E, PAWASKAR P. EDA flows and modeling approaches to study analog/digital coupling[C]// DesignCon, 2020. [48] MOON S, PRSTIC S, CHIU C. Thermal management of a stacked-die package in a handheld electronic device using passive solutions[J]. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2008, 31(1): 791-797. [49] 何成. 典型封装芯片的热阻网络模型研究[D]. 西安: 西安电子科技大学, 2014. [50] 申海东,张泽,陈科雯,等. 基于双热阻模型的典型芯片封装热分析及评估方法[J]. 装备环境工程, 2018, 15(7): 10-14. [51] 李逵,张庆学,张欲欣,等. TSV结构SiP模块的等效建模仿真与热阻测试[J]. 半导体检测与设备, 2020,45(12): 982-987. [52] KONG L S, YAO Q B, LV X R, et al. Submodelling method for modelling and simulation of high density electronic assemblies[J]. Journal of Physics, 2020: 1-10. [53] 袁伟星,曾燕萍,张琦,等. 基于多尺度等效模型的SiP热分析及散热优化[J]. 电子与封装,2021, 21(8): 080201. [54] WANG H, LI D, Gupta A X. Composable thermal modeling and characterization for fast temperature estimation[C]// IEEE 19th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2010. [55] SU Y F, YANG F, ZENG X. AMOR: An efficient aggregating based model order reduction method for many-terminal interconnect circuits[C]// IEEE/ACM Design Automation Conference(DAC), 2012. [56] DONG X J, GRIFFO A, WANG J B. Fast simulation of transient temperature distributions in power modules using multiparameter model reduction [J]. The Journal of Engineering, 2019(17): 3603-3608. [57] 严星. 功率MMIC三维异构集成与封装的热分析与仿真研究[D]. 上海: 上海交通大学, 2019. [58] 王金兰,仝良玉,刘培生,等. 一种多芯片封装(MCP)的热仿真设计[J]. 计算机工程与科学,2012,34(4):28-31. [59] 芮喜. 多芯片组件的扩展热阻与热耦合效应研究[D]. 西安:西安电子科技大学,2015. [60] WU Q S, LI G Y, ZHOU B, et al. Research on vibration reliability of system in package[J]. 20th International Conference on Electronic Packaging Technology, 2019. [61] BORISKOV P, ERSHOVA N, PUTROLAYNEN V, et al. Temperature simulation of system-in-package produced with hybrid chip mounting technology[J]. International Conference on Information Processing and Control Engineering, 2019. [62] HUANG J Y, CAO Y, GAO C. Vulnerability analysis of system-in-package based on reliability enhancement testing simulation[J]. 2nd International Conference on Safety Produce Informatization (IICSPI), 2019, 639-644. [63] 张琦,曾燕萍,袁伟星,等. 大功率高性能SiP的电热耦合分析[J]. 电子与封装,2021, 2021(8): 080403. [64] 韩志康,王勇勇,杨勋勇,等. 多层芯片键合界面的可靠性仿真分析[J]. 传感器与微系统, 2020, 39(3): 50-56. [65] POGUDKIN A V, BELYAKOV I A, VERTYANOV D V, et al. Research of reconstructed wafer surface planarity on the metal-compound-silicon boundary for multi-chip module with embedded dies[C]// 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2019: 2008-2012. [66] 张墅野,鲍天宇,修子扬. 三维封装电迁移Cu互连线的多物理场模拟仿真[J]. 材料导报, 2021, 35(2): 02133-02138 [67] 李梦琳,张欲欣,肖泽平. 2.5D TSV封装结构热应力可靠性研究[J]. 电子工艺技术, 2020, 41(3): 153-155. [68] 罗江波. 高性能硅转接板的系统设计及集成制造方法研究[D]. 上海: 上海交通大学, 2019. [69] 陈亚秋. 基于ECPT的焊点可靠性评估方法研究[D]. 成都:电子科技大学, 2018. [70] LI Y Y, DONG D, WANG H. Simulation and fatigue damage prediction for board level CBGA solder joint of LTCC-based SiP module under random vibration loading[C]// 20th International Conference on Electronic Packaging Technology, 2019. [71] 焦鸿浩. 多物理场载荷下电子封装板级焊点仿真研究[D]. 黑龙江: 哈尔滨理工大学, 2019. [72] MA Y Y, TALLEDO J, LUAN J E. Thermal cycling durability assessment and enhancement of FBGA package for automotive applications[C]// 20th International Conference on Electronic Packaging Technology, 2019. [73] 张振越,李祝安,王剑峰,等. 倒装焊封装器件热仿真校准技术研究[J]. 计量与测试技术, 2020, 38(5): 103-106. [74] 石潇. 覆铜型式对PCB板上电子元件热布局优化效果的影响研究[D]. 西安: 长安大学, 2018. [75] 张琦. 基于交错堆叠DDR模组的结温预测与优化研究[D]. 南京: 南京邮电大学, 2020. [76] 王家睿. MCM热布局的模糊遗传算法分析[J]. 科技创新导报, 2019(28): 111-112. [77] 杨志清,潘中良. 基于遗传粒子群算法的三维芯片热布局优化[J].电子工艺技术, 2019,40(5): 249-260. [78] CAI T T, XI W, SUO S L, et al. A multi-chip SiP package design scheme[C]// 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, 2019, 1889-1893. [79] KIMMO R, KOEN B, KRISTOFFER A, et al. Multi-physical simulations and modelling of an integrated GaN-on-Si module concept for millimetre-wave communications[C]// 2020 IEEE 70th Electronic Components and Technology Conference, 2020, 1369-1375. [80] LI Z R, XU G, HUANG XJ, et al. Evaluation method of electronic performance margins for Sip based on field-circuit and multiple physical cooperative simulation[C]// 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), 2019: 1-6.
|