[1] 李晋闽. SiC材料及器件研制的进展[J]. 物理, 2000, 29(8): 481-487. [2] MONROY E, OMN S F, CALLE F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science and Technology, 2003, 18(4): R33-R51. [3]郝跃, 彭军, 杨银堂. 碳化硅宽带隙半导体技术[M]. 北京: 科学出版社, 2000. [4]钱照明, 张军明, 盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报,2014,34(29):5149-5161. [5] COOPER J A, AGARWAL A. SiC power-switching devices-the second electronics revolution?[J]. Proceedings of the IEEE, 2002, 90(6): 956-968. [6] BALIGA B J. Fundamentals of power semiconductor devices[M]. Boston, MA: Springer US, 2008. [7] RAMUNGUL N, CHOW T P, GHEZZO M, et al. A fully planarized, 6H-SiC UMOS insulated-gate bipolar transistor[C]// 1996 54th Annual Device Research Conference Digest, 1996. [8] SINGH R, RYU S H, PALMOUR J W. High temperature, high current, p-channel UMOS 4H-SiC IGBT[C]// 1999 57th Annual Device Research Conference Digest (Cat. No.99TH8393), 1999. [9] ZHANG Q, CHANG H R, GOMEZ M, et al. 10 kV trench gate IGBTs on 4H-SiC[C]//IEEE International Symposium on Power Semiconductor Devices and IC’s, 2005: 303-306. [10]ZHANG Q C, JONAS C, CALLANAN R, et al. New Improvement Results on 7.5 kV 4H-SiC p-IGBTs with Rdiff,on of 26 mΩ·cm2 at 25℃[C]// IEEE International Symposium on Power Semiconductor Devices and IC's, 2007,281-284. [11] WANG X K, COOPER J A. High-voltage n-channel IGBTs on free-standing 4H-SiC epilayers[J]. IEEE Transactions on Electron Devices, 2010, 57(2): 511-515. [12] YONEZAWA Y, MIZUSHIMA T, TAKENAKA K, et al. Low Vf and highly reliable 16 kV ultrahigh voltage SiC flip-type n-channel implantation and epitaxial IGBT[C]// IEEE International Electron Devices Meeting, 2013: 6.6.1-6.6.4. [13] HINOJOSA M, OGUNNIYI A, O'BRIEN H, et al. Evaluation of high-voltage, high-power 4H-SiC insulated-gate bipolar transistors[C]// IEEE International Power Modulator and High Voltage Conference (IPMHVC), 2014: 101-104. [14] YANG X L, TAO Y H, YANG T T, et al. Fabrication of 4H-SiC n-channel IGBTs with ultra high blocking voltage[J]. Journal of Semiconductors, 2018, 39(3): 034005. [15] WEN Z X, ZHANG F, SHEN Z W, et al. Design and fabrication of 10-kV silicon–carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension[J]. Chinese Physics B, 2019, 28(6): 068504. [16]杨晓磊, 李士颜, 赵志飞,等. 超高压碳化硅N沟道IGBT器件的设计与制造[J]. 电子与封装, 2022, 22(4): 040102. [17]SINGH R, RYU S H, CAPELL D C, et al. High temperature SiC trench gate p-IGBTs[J]. IEEE Transactions on Electron Devices,2003,50(3):774-784. [18] ZHANG Q C, JONAS C, RYU S H, et al. Design and fabrications of high voltage IGBTs on 4H-SiC[C]// IEEE International Symposium on Power Semiconductor Devices and IC's, 2006: 1-4. [19] KATAKAMI S, FUJISAWA H, TAKENAKA K, et al. Fabrication of a P-channel SiC-IGBT with high channel mobility[J]. Materials Science Forum, 2013, 740-742: 958-961. [20] DAS M K, ZHANG Q J, CALLANAN R, et al. A 13 kV 4H-SiC n-channel IGBT with low Rdiff, on and fast switching[J]. Materials Science Forum, 2008, 600-603: 1183-1186. [21] WATANABE N, OKINO H, SHIMA A. Impact of cell layout on on-state and dynamic characteristics of N-channel SiC IGBTs[C]// IEEE International Symposium on Power Semiconductor Devices and IC’s (ISPSD), 2022: 85-88. |