[1] SHE X, HUANG A Q, LUCíA ó, et al. Review of silicon carbide power devices and their applications [J]. IEEE Transactions on Industrial Electronics, 2017, 64(10):8193-8205. [2] CHOWDHURY S, CHOW T P. Performance tradeoffs for ultra-high voltage (15 kV to 25 kV) 4H-SiC n-channel and p-channel IGBTs [C]// Proceedings of the 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), June 12 – 16, 2016, Prague, Czech Republic, 2016. [3] CHOWDHURY S, HITCHCOCK C. 4H-SiC n-channel insulated gate bipolar transistors on (0001) and (000-1) oriented free-standing n-substrates[J]. IEEE Electron Device Letter, 2016, 37(3): 317-320. [4] ZHANG Q C, JONAS C, HEALTH B, et al. 9 kV 4H-SiC IGBTs with 88 mΩ·cm2 of Rdiff,on [J]. Materials Science Forum, 2007, 556-557: 771-774. [5] WALDEN G G, MCNUTT T, SHERWIN M, et al. Comparison of 10 kV 4H-SiC power MOSFETs and IGBTs for High Frequency Power Conversion[J]. Materials Science Forum, 2009, 600-603: 1139-1142. [6] DAS M K, ZHANG Q C, CALLANAN R, et al. A 13 kV 4H-SiC n-channel IGBT with Low Rdiff,on and fast switching[J]. Materials Science Forum, 2009, 600-603: 1183-1186. [7] RYU S, CAPELL C, BRUNT E V, et al. Ultra high voltage MOS controlled 4H-SiC power switching devices[J]. Semiconductor Science and Technology, 2015, 30: 730. [8] RYU S, CAPELL C, JONAS C, et al. An analysis of forward conduction characteristics of ultra high voltage 4H-SiC N-IGBTs[J]. Mat Sci Forum, 2016, 858: 945-948. [9] RYU S, CAPELL C, JONAS C, et al. 20 kV 4H-SiC N-IGBTs[J]. Materials Science Forum, 2014, 778-780: 1030-1033. [10] WATANABE N, YOSHIMOTO H, SHIMA A, et al. 6.5 kV n-channel 4H-SiC IGBT with low switching loss achieved by extremely thin drift layer[J]. Materials Science Forum, 2016, 858: 939-944. [11] BRUNT E V, CHENG L, O'LOUGHLIN M J, et al. 27 kV, 20 A 4H-SiC n-IGBTs[J]. Mat Sci Forum, 2015, 821-823: 847-850. [12] YANG X L, LI S Y, BAI S, et al. Fabrication of 4H-SiC n-channel IGBTs with ultra high blocking voltage[J]. Journal of Semiconductors, 2018, 39(3) :034005.
|