[3] YAO Y, CHEN X, GUO H, et al.
Graphene oxide thin film coated quartz crystal microbalance for humidity detection[J].
Applied Surface Science, 2011, 257(17): 7778-7782. [4] 朱朋辉, 陈港, 欧华杰,等. 纳米纤维素/碳纳米管复合薄膜的制备及湿敏性能[J]. 华南理工大学学报(自然科学版), 2019, 47(8): 129-135. [6] LI T, ZHANG L X, XING Y, et al. A
ciprofloxacin based 1D Cd(II) coordination polymer with highly efficient
humidity sensing performance[J]. Inorganic Chemistry Communications, 2019, 108:
107541. [8] YASAEI P, BEHRANGINIA A, FOROOZAN T,
et al. Stable and selective humidity sensing using stacked black phosphorus
flakes[J]. ACS Nano, 2015, 9(10): 9898-9905. [13] CIPLYS D, RIMEIKA R, MONEREO O,
et al. Sub-second humidity sensing using surface acoustic waves in
electrospray-deposited carbon nanofiber and reduced graphene oxide
structures[C]. Proceedings of IEEE Sensors, December, 2014, 110-113. ? [14] LIN Q, LI Y, YANG M.
Investigations on the sensing mechanism of humidity sensors based on
electrospun polymer nanofibers[J]. Sensors
and Actuators B: Chemical, 2012, 171-172: 309-314. [15] MENG Z, STOLZ R M, MENDECKI L, et
al. Electrically-transduced chemical sensors based on two-dimensional nanomaterials[J].
Chemical Reviews, 2019, 119(1):
478-598. [16] WANG J, WANG X H, WANG X D. Study
on dielectric properties of humidity sensing nanometer materials[J]. Sensors
and Actuators B: Chemical, 2005, 108(1): 445-449. [17] CHOI K S, KIM D S, YANG H J, et
al. A highly sensitive humidity sensor with a novel hole array structure using
a polyimide sensing layer[J]. RSC Advances, 2014, 4(61): 32075-32080. [19] CHEN W P, ZHAO Z G, LIU X W, et
al. A capacitive humidity sensor based on multi-wall carbon nanotubes
(MWCNTs)[J]. Sensors, 2009, 9(9): 7431-7444. [20] TRIPATHY A, PRAMANIK S, MANNA A,
et al. Design and development for capacitive humidity sensor applications of
lead-free Ca, Mg, Fe, Ti-oxides-based electro-ceramics with improved sensing
properties via physisorption[J]. Sensors, 2016, 16(7): 1135. [22] ZHANG X, MING H, LIU R, et al. Highly
sensitive humidity sensing properties of carbon quantum dots films[J].
Materials Research Bulletin, 2013, 48(2): 790-794. [25] RIVADENEYRA A, FERNáNDEZ-SALMERóN
J, BANQUERI J, et al. A novel electrode structure compared with interdigitated
electrodes as capacitive sensor[J]. Sensors and Actuators B: Chemical, 2014,
204: 552-560. doi:10.1016/j.snb.2014.08.010. [26] DE LUCA A, SANTRA S, GHOSH R, et
al. Temperature-modulated graphene oxide resistive humidity sensor for indoor
air quality monitoring[J]. Nanoscale, 2016, 8(8): 4565-4572. [27] JUNG S, JI T. ZnO nanorod-based
humidity sensors with fast response[J]. IEEE Electron Device Letters, 2014,
35(9): 960-962. [28] CHEN L T, LEE C Y, CHENG W H.
MEMS-based humidity sensor with integrated temperature compensation
mechanism[J]. Sensors and Actuators A: Physical, 2008, 147(2): 522-528. [29] ISLAM T, UDDIN Z, GANGOPADHYAY A.
Temperature effect on capacitive humidity sensors and its compensation using
artificial neural networks[J]. Sensors & Transducers, 2015, 191(8):
126-134. [30] XU W, FENG X, XING H. Modeling
and analysis of adaptive temperature compensation for humidity sensors[J].
Electronics, 2019, 8(4):425. doi:10.3390/electronics8040425. [31] ZHANG J, DICHIARA A B, NOVOSSELOV
I, et al. Polyacrylic acid coated carbon nanotube-paper composites for humidity
and moisture sensing[J]. Journal of Materials Chemistry C, 2019, 7(18): 5374-5380.
[32] ZHU C, XU F, ZHANG L, et al.
Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing[J].
Chemistry-A European Journal, 2016, 22(22): 7357-7362. [33] YANG M Z, DAI C L, LIN W Y.
Fabrication and characterization of polyaniline/PVA humidity microsensors[J].
Sensors, 2011, 11(8): 8143-8151. [37] MDSIN N D, MAMAT M H, RUSOP M.
Sensing characteristics of PVA- ZnO/SnO2 nanocube humidity sensor prepared by
sol-gel immersion technique[C]. Advanced Materials Research, November, 2013,
832: 466-470. [38] FENG M H, WANG W C, LI X J.
Capacitive humidity sensing properties of CdS/ZnO sesame-seed-candy structure
grown on silicon nanoporous pillar array[J]. Journal of Alloys and Compounds,
2017, 698: 94-98. [39] CHEN W, HUANG J, ZHU C, et al. An
interdigital capacitive humidity sensor with layered black phosphorus flakes as
a sensing material[J]. IEEE Sensors Journal, 2019, 19(23): 11007-11013. [40] MARSHALL R J, KALINOVSKYY Y,
GRIFFIN S L, et al. Functional versatility of a series of Zr
metal-organic frameworks probed by solid-state photoluminescence spectroscopy[J].
Journal of the American Chemical Society, 2017, 139(17): 6253-6260. [41] FARAHANI H, WAGIRAN R, HAMIDON M
N. Humidity sensors principle, mechanism, and fabrication technologies: a
comprehensive review[J]. Sensors, 2014, 14(5): 7881-7939. [43] BOUDADEN J, STEINMA?L M, ENDRES H
E, et al. Polyimide-based capacitive humidity sensor[J]. Sensors, 2018, 18(5): 1516.
[44] TURKDOGAN S. Bandgap engineered II-VI
quaternary alloys and their humidity sensing performance analyzed by QCM[J]. Journal
of Materials Science: Materials in Electronics, 2019, 30(11): 10427-10434. [47] SUN H, WU L, WEI W, et al. Recent
advances in graphene quantum dots for sensing[J]. Materials Today, 2013, 16(11):
433-442. [48] SREEPRASAD T S, RODRIGUEZ A A,
COLSTON J, et al. Electron-tunneling modulation in percolating network of
graphene quantum dots: fabrication, phenomenological understanding, and
humidity/pressure sensing applications[J]. Nano Letters, 2013, 13(4): 1757-1763. [49] 袁娇, 刘小艳, 陈玉泉,等. 碳纳米管水泥基复合材料温敏及湿敏性能研究[J]. 混凝土与水泥制品, 2020, 4: 5-8. [50] ZHANG S, ZHOU F, PENG H, et al.
Fabrication and humidity sensing performance studies of a fluorescent film
based on a cholesteryl derivative of perylene bisimide[J]. Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy, 2016, 165: 145-149. [53] CAI M L, WANG G E, YAO M S, et al.
Semiconductive 1D nanobelt iodoplumbate hybrid with high humidity response[J]. Inorganic
Chemistry Communications, 2018, 93: 42-46. [54] ZHU P, LIU Y, FANG Z, et al.
Flexible and highly sensitive humidity sensor based on cellulose nanofibers and
carbon nanotube composite film[J]. Langmuir, 2019, 35(14): 4834-4842. [55] YUAN W, QIAN H, LIU Y, et al.
Highly sensitive temperature and humidity sensor based on carbon
nanotube-assisted mismatched single-mode fiber structure[J]. Micromachines.
2019, 10(8): 521. [56] HORZUM N, TASCIOGLU D, OKUR S, et
al. Humidity sensing properties of ZnO-based fibers by electrospinning[J].
Talanta-Oxford Then Amsterdam, 2011, 85(2): 1105-1111. [57] QI Q, ZHANG T, WANG S, et al.
Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid
response and recovery[J]. Sensors and Actuators B: Chemical, 2009, 137(2): 649-655.
[58] YAVARI F, KORATKAR N.
Graphene-based chemical sensors[J]. The Journal of Physical Chemistry Letters,
2012, 3(13): 1746-1753. [59] ZHAO C L, QIN M, HUANG Q A. Humidity
sensing properties of the sensor based on graphene oxide films with different
dispersion concentrations[C]. 2011 IEEE Sensors Proceedings, 2011,
129-132. [61] KUMAR R, JENJETI R N, SAMPATH S.
Bulk and few-layer 2D, p-MnPS3 for sensitive and selective moisture sensing[J].
Advanced Materials Interfaces, 2019, 6(20): 1-8. [62] SHEVATE R, HAQUE M A, AKHTAR FH,
et al. Embedding 1D conducting channels into 3D isoporous polymer films
for high-performance humidity sensing[J]. Angewandte
Chemie-International Edition, 2018, 57(35): 11218-11222. [63] ZHAO C L, QIN M, HUANG Q A. A
fully packaged CMOS interdigital capacitive humidity sensor with polysilicon
heaters[J]. IEEE Sensors Journal, 2011, 11(11): 2986-2992. [64] 黄慧锋, 黄庆安, 秦明. 湿度传感器封装的研究进展[J]. 电子器件, 2004, 27(3): 533-536. [65] 候明高. 一种湿度传感器封装结构[P]. CN110836912A,2020-02-25. [66] HARRI A M, GENZER M, KEMPPINEN O,
et al. Mars science laboratory relative humidity observations: initial results
[J]. Journal of Geophysical Research-Planets, 2014, 119(9): 2132-2147. [67] SENSIRION A G. Method for
manufacturing a gas sensor package[P]. EP14171633A.2014-06-06. [68] 李宝烨. 温湿度传感器集成系统设计[D]. 南京:东南大学, 2017. [69] YANG J H, SHI R L, LOU Z, et al.
Flexible smart noncontact control systems with ultrasensitive humidity sensors
[J]. SMALL, 2019, 15(38): 1902801. [70] HU Y C, DAI C L, HSU C C.
Titanium dioxide nanoparticle humidity microsensors integrated with circuitry
on-a-chip[J]. Sensors, 2014, 14(3): 4177-4188. [71] 齐元. 温湿压传感器读出电路关键技术研究[D]. 四川:电子科技大学, 2018. [72] 秦浩, 尤佳, 刘智敏,等. 一种高精度湿度传感器的研究[J]. 黑龙江科技信息, 2015, 13: 34-35. [73] WANG Z, SONG C, YIN H, et al.
Capacitive humidity sensors based on zinc oxide nanorods grown on silicon
nanowires arrays at room temperature[J]. Sensors and Actuators A: Physical,
2015, 235: 234-239. [74] LU Z, WANG J, XIE J, et al.
One-pot synthesis of one-dimensional CdTe-cystine nanocomposite for humidity
sensing[J]. Nanotechnology, 2014, 25(11): 175013. [75] LI X, CHEN X, CHEN X, et al.
High-sensitive humidity sensor based on graphene oxide with evenly dispersed
multiwalled carbon nanotubes[J]. Materials Chemistry and Physics Journal, 2018,
207: 135-140.
|