电子与封装 ›› 2021, Vol. 21 ›› Issue (4): 040405 . doi: 10.16257/j.cnki.1681-1070.2021.0414
• 微电子制造与可靠性 • 上一篇
乔明;袁柳
收稿日期:
2020-10-22
出版日期:
2021-04-27
发布日期:
2020-12-18
作者简介:
乔明(1981—),男,辽宁抚顺人,博士,教授,博士生导师,现从事功率半导体器件、功率高压集成技术、功率高压集成电路、功率器件可靠性、抗辐射高压集成技术等方面的研究。
QIAO Ming, YUAN Liu
Received:
2020-10-22
Online:
2021-04-27
Published:
2020-12-18
摘要: 功率集成器件在交流转直流(AC/DC)电源转换IC、高压栅驱动IC、LED驱动IC等领域均有着广泛的应用。介绍了典型的可集成功率高压器件,包括不同电压等级的横向双扩散金属氧化物半导体场效应晶体管(LDMOS)以及基于硅和SOI材料的横向绝缘栅双极型晶体管(LIGBT),此外还介绍了高低压器件集成的BCD工艺和其他的功率集成关键技术,包括隔离技术、高压互连技术、dV/dt技术、di/dt技术、抗闩锁技术等,最后讨论了功率集成器件及其兼容技术的发展趋势。
中图分类号:
乔明;袁柳. 功率集成器件及其兼容技术的发展*[J]. 电子与封装, 2021, 21(4): 040405 .
QIAO Ming, YUAN Liu. Development of Integrated Power Devices and Compatible Technologies[J]. Electronics & Packaging, 2021, 21(4): 040405 .
[1] DISNEY D, LETAVIC T, TRAJKOVIC T, et al. High-voltage integrated circuits: history, state of the art, and future prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3):659-673. [2] CHEN Y, CHANG C, YANG P. A novel constant current control circuit for a primary-side controlled AC-DC LED driver[C]. International Conference on Electronics, Computer and Computation, 2014:1-4. [3] MATSUDAI T, SATO K, YASUHARA N, et al. 0.13 μm CMOS/DMOS platform technology with novel 8 V/9 V LDMOS for low voltage high-frequency DC-DC converters[C]. IEEE International Symposium on Power Semiconductor Devices and ICs. 2010:315-318. [4] TARUI Y. Diffusion self-aligned enhance-depletion MOS-IC (DSA-ED-MOS-IC)[J]. Solid State Devices, 1970:193-198. [5] QIAO M, LI Y, ZHOU X, et al. A 700-V junction-isolated triple RESURF LDMOS with N-type top layer[J]. IEEE Electron Device Letters, 2014, 35(7):774-776. [6] ZHANG W T, QIAO M, WU L, et al. Ultra-low specific on-resistance SOI high voltage trench LDMOS with dielectric field enhancement based on ENBULF concept[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2013:329-332. [7] QIAO M, YU Y, ZHANG W T, et al. Lateral high-voltage device: US10068965B1[P]. 2018-09-04. [8] JUENGLING W, HILLENIUS S J, CHEN M L, et al. Integration of poly buffered LOCOS and gate processing for submicrometer isolation technique[J]. IEEE Transactions on Electron Devices, 2002, 38(12):2721. [9] CHOI Y, JEON C, KIM M. Design and process considerations for 1200 V HVIC technology[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2009:311-314. [10] QIAO M, WANG Y, LI Y, et al. Design of a 1200-V ultra-thin partial SOI LDMOS with n-type buried layer[J]. Superlattices and Microstructures, 2014, 75:796-805. [11] OKAWA T, EGUCHI H, TAKI M, et al. 2000 V SOI LDMOS with new drift structure for HVICs[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2016:435-438. [12] APPELS J A, VAES H M J. High voltage thin layer devices (RESURF devices)[C]. IEEE International Electron Devices Meeting, 1979:238-241. [13] IMAM M, QUDDUS M, ADAMS J, et al. Efficacy of charge sharing in reshaping the surface electric field in high-voltage lateral RESURF devices[J]. IEEE Transactions on Electron Devices, 2004, 51(1):141-148. [14] 王宏杰, 蔡曦, 乔明,等. PDP驱动电路中高压NLDMOS设计[C]. 全国半导体集成电路,硅材料学术会议. 2007:828-830. [15] HUANG Y, QIAO M, SUN Z, et al. 230 V SOI PLDMOS with gate field plate for PDP scan IC[C]. IEEE International Conference on Solid-State and Integrated Circuit Technology, 2012:1-3. [16] LUDIKHUIZE A W. A review of RESURF technology[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2000:11-18. [17] 方健, 张正璠, 雷宇,等. 有n埋层结构的1200V横向变掺杂双RESURF LDMOS研制[J]. 半导体学报, 2005, 26(3):541-546. [18] IMAM M, HOSSAIN Z, QUDDUS M, et al. Design and optimization of double-RESURF high-voltage lateral devices for a manufacturable process[J]. IEEE Transactions on Electron Devices, 2003, 50(7):1697-1700. [19] DESOUZA M M, NARAYANAN E M S. Double resurf technology for HVICs[J]. Electronics Letters, 1996, 32(12):1092. [20] QIAO M, WANG Z K, WANG Y R, et al. 3-D edge termination design and ron’s-BV model of a 700-V triple RESURF LDMOS with N-type top layer[J]. IEEE Transactions on Electron Devices, 2017, 64(6):2579-2586. [21] QIAO M, WANG Y, ZHOU X, et al. Analytical modeling for a novel triple RESURF LDMOS with N-top Layer[J]. IEEE Transactions on Electron Devices, 2015, 62(9):2933-2939. [22] QIAO M, YU L L, WANG H H, et al. On the progressive performance of a 700-V triple RESURF LDMOS based on substrate termination technology[C]. IEEE International Conference on Solid-State and Integrated Circuit Technology, 2016:385-388. [23] WASISTO H S, SHEU G, YANG S M, et al. A novel 800 V multiple RESURF LDMOS utilizing linear p-top rings[C]. IEEE Region 10 Conference, 2010:75-79. [24] SAMEH K. Multiple lateral RESURF LDMOST: US8106451B2[P]. 2012-01-31. [25] UDREA F, POPESCU A. 3D RESURF double-gate MOSFET: a revolutionary power device concept[J]. Electronics Letters, 1998, 34(8):808-809. [26] QIAO M, HU X, WEN H, et al. A novel substrate-assisted RESURF technology for small curvature radius junction[C]. IEEE International Symposium on Power Semiconductor Devices and ICs. IEEE, 2011:16-19. [27] QIAO M, WU W, ZHANG B, et al. A novel substrate termination technology for lateral double-diffused MOSFET based on curved junction extension[J]. Semiconductor Science and Technology, 2014, 29(4):045002. [28] GROVE A S, JR O L, HOOPER W W. Effect of surface fields on the breakdown voltage of planar silicon p-n junctions[J]. IEEE Transactions on Electron Devices, 1967, 14(3):157-162. [29] BRIEGER K P, FALCK E. The contour of an optimal field plate-an analytical approach[J]. IEEE Transactions on Electron Devices, 1988, 35(5):684-688. [30] BASSUS R C, FALCK E, GERLACH W. Application of the evolution strategy to optimize multistep field plates for high voltage planar pn-junctions[J]. Archiv Fur Elektrotechnik, 1992, 75(5):345-349. [31] HE Y T, QIAO M, LI L, et al. A Lateral regulator diode with field plates for light-emitting-diode lighting[J]. Chinese Physics Letters, 2016, 33(9):97-101. [32] CHEN X B, ZHANG B, LI Z J. Theory of optimum design of reverse-biased p-n junctions using resistive field plates and variation lateral doping[J]. Solid-State Electronics, 1992, 35(9):1365-1370. [33] QIAO M, ZHUANG X, WU L J. Breakdown voltage model and structure realization of a thin silicon layer with linear variable doping on a silicon on insulator high voltage device with multiple step field plates[J]. Chinese Physics B, 2012, 21(10):504-511. [34] QIAO M, LI C, LIU Y, et al. Design of a novel triple reduced surface field LDMOS with partial linear variable doping n-type top layer[J]. Superlattices and Microstructures, 2016, 93:242-247. [35] LORENZ L, DEBOY G, KNAPP A, et al. COOLMOS/sup TM/-a new milestone in high voltage power MOS[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 1999:3-10. [36] CHEN X B, JOHNNY S. Optimization of the specific on-resistance of the COOLMOS[J]. IEEE Transactions on Electron Devices, 2001, 48(2):344-348. [37] ZHANG W, ZHANG B, QIAO M, et al. The RON, min of balanced symmetric vertical super junction based on R-well model[J]. IEEE Transactions on Electron Devices, 2016, 64(1):224-230. [38] ZHANG W T, PU S, LAI C L, et al. Non-full depletion mode and its experimental realization of the lateral superjunction[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2018:475-478. [39] DARWISH M, BOARD K. Lateral resurfed COMFET[J]. Electronics Letters, 1984, 20(12):519-520. [40] FU Q, ZHANG B, QIAO M, et al. Reverse conducting lateral insulated-gate bipolar transistors with a non-local band-to-band tunnelling junction[J]. Micro and Nano Letters, 2014, 9(8):544-547. [41] MAO K, QIAO M, ZHANG B, et al. A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage[J]. Journal of Semiconductors, 2014, 35(005):36-41. [42] YASUHARA N, FUNAKI H, MATSUDAI T, et al. Experimental verification of large current capability of lateral IEGTs on SOI[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 1996:97-100. [43] SAKANO J, SHIRAKAWA S, HARA K, et al. Large current capability 270 V lateral IGBT with multi-emitter[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2010:83-86. [44] DUAN S L, QIAO M, MAO K, et al. 700 V segmented anode LIGBT with low on-resistance and onset voltage[C]. IEEE International Conference on Solid-State and Integrated Circuit Technology, 2010:897-899. [45] GOUGH P A, SIMPSON M R, RUMENNIK V. Fast switching lateral insulated gate transistor[C]. IEEE International Electron Devices Meeting, 1986:218-221. [46] UDREA F, UDUGAMPOLA U N K, SHENG K, et al. Experimental demonstration of an ultra-fast double gate inversion layer emitter transistor (DG-ILET)[J]. IEEE Electron Device Letters, 2002, 23(12):725-727. [47] CHEN W, ZHANG B, LI Z. Area-efficient fast-speed lateral IGBT with a 3-D n-region-controlled anode[C]. IEEE Electron Device Letters, 2010, 31(5): 467-469. [48] ZHU J, ZHANG L, SUN W, et al. Electrical Characteristic Study of an SOI-LIGBT With Segmented Trenches in the Anode Region[J]. IEEE Transactions on Electron Devices, 2016, 63(5):2003-2008. [49] HE Y T, QIAO M, ZHANG B, et al. A novel low turnoff loss carrier stored SOI LIGBT with trench gate barrier[J]. Superlattices and Microstructures, 2016, 89:179-187. [50] JIANG L L, FAN H, QIAO M, et al. ESD characterization of a 190V LIGBT SOI ESD power clamp structure for plasma display panel applications[J]. Microelectronics Reliability, 2013:687-693. [51] CAI J, SIN J K O, MOK P K T, et al. A new lateral trench-gate conductivity modulated power transistor[J]. IEEE Transactions on Electron Devices, 1999, 46(8):1788-1793. [52] LU, D. H, JIMBO, S, FUJISHIMA, N. A low on-resistance high voltage soi ligbt with oxide trench in drift region and hole bypass gate configuration[C]. IEEE International Electron Devices Meeting, 2005:381-384. [53] KRISHNA S, KUO J, GAETA I S. An analog technology integrates bipolar, CMOS, and high-voltage DMOS transistors[J]. IEEE Transactions on Electron Devices, 1984, 31(1):89-95. [54] ANDREINI, A, CONTIERO, GALBIATI P. A new integrated silicon gate technology combining bipolar linear, CMOS logic, and DMOS power parts[J]. IEEE Transactions on Electron Devices, 1986, 33(12):2025-2030. [55] CONTIERO C, ANDREINI A, GALBIATI P. Roadmap differentiation and emerging trends in BCD technology[C]. IEEE European Solid-State Device Research Conference, 2005:275-282. [56] QIAO M, PU S, ZHANG B, et al. Bipolar-CMOS-DMOS semiconductor device and manufacturing method: US10607987B2[P]. 2020-03-31. [57] QIAO M, LAI C L, HE L R, et al. BCD semiconductor device and method for manufacturing the same: US10510747B1[P]. 2019-10-17. [58] QIAO M, JIANG L L, ZHANG B, et al. A 700 V BCD technology platform for high voltage applications[J]. Journal of Semiconductors, 2012, 33(4):47-50. [59] VENTURATO M, CANTONE G, RONCHI F, et al. A novel 0.35 μm 800 V BCD technology platform for offline applications[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2012:397-400. [60] LUDIKHUIZE A W. A versatile 700-1200-V IC process for analog and switching applications[J]. IEEE Transactions on Electron Devices, 1991, 38(7):1582-1589. [61] WANG H, QIAO M, JIN F, et al. A 0.35 μm 600 V ultra-thin epitaxial BCD technology for high voltage gate driver IC[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2018:311-314. [62] ST Microelectronics. Innovation & technology: BCD [EB/OL]. [2019-5-1]. https://www.st.com/content/st_com/en/about/innovation---technology/BCD.html. [63] MAO K, QIAO M, JIANG L L, et al. A 0.35 μm 700 V BCD technology with self-isolated and non-isolated ultra-low specific on-resistance DB-nLDMOS[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2013:397-400. [64] 乔明, 方健, 肖志强,等. 1200 V MR D-RESURF LDMOS与BCD兼容工艺研究[J]. 半导体学报, 2006, 27(8):1447-1452. [65] CHENG S K, FANG D, QIAO M, et al. A novel 700 V deep trench isolated double RESURF LDMOS with P-sink layer[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2017:323-326. [66] QIAO M, ZHANG K, ZHOU X, et al. 250 V thin-layer SOI technology with field pLDMOS for high-voltage switching IC[J]. IEEE Transactions on Electron Devices, 2015, 62(6):1910-1976. [67] QIAO M, LUO B, HU X I, et al. SOI devices for plasma display panel driver chip: US8704329B2 [P]. 2014-4-22. [68] QIAO M, ZHOU X, HE Y, et al. 300-V high-side thin-layer-SOI field pLDMOS with multiple field plates based on field implant technology[J]. IEEE Electron Device Letters, 2012, 33(10):1438-1440. [69] QIAO M, ZHANG X, WEN S, et al. A review of HVI technology[J]. Microelectronics Reliability, 2014, 54(12):2704-2716. [70] 乔明, 周贤达, 段明伟,等. 具有高压互连线的多区双RESURF LDMOS击穿特性[J]. 半导体学报, 2007, 9:1428-1432. [71] FUJISHIMA N, TAKEDA H. A novel field plate structure under high voltage interconnections[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 1990:91-96. [72] SAKURAI N, NEMOTO M, ARAKAWA H, et al. A three-phase inverter IC for AC220 V with a drastically small chip size and highly intelligent functions[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2002:310-315. [73] 乔明, 张昕, 马金荣,等. 一种多片式高压驱动电路: ZL201410450116.5[P]. 2015-02-04 [74] FLACK E, GERLACH W. Influence of interconnections onto the breakdown voltage of planar high-voltage p-n junctions[J]. IEEE Transactions on Electron Devices, 1993, 40(2):439-447. [75] QIAO M, LI Z, ZHANG B, et al. Realization of over 650 V double RESURF LDMOS with HVI for high side gate drive IC[C]. IEEE International Conference on Solid-State and Integrated Circuit Technology, 2006:248-250. [76] DESOUZA M M, NARAYANAN E M S. Double resurf technology for HVICs[J]. Electronics Letters, 1996, 32(12):1092. [77] 文帅, 乔明. 具有单层浮空场板的高压LDMOS器件研究[J]. 电子与封装, 2015, 15(8):34-37. [78] TERASHIMA T, YOSHIZAWA M, FUKUNAGA M, et al. Structure of 600 V IC and a new voltage sensing device[J]. IEEE International Symposium on Power Semiconductor Devices and ICs, 1993: 224-229. [79] MCARTHUR D C, MULLEN R A. High voltage MOS transistor having shielded crossover path for a high voltage connection bus: US5040045[P]. 1991-8-13. [80] TERASHIMA T. Structure for preventing electric field concentration in semiconductor device: US5270568[P]. 1993-12-14. [81] TERASHIMA T, YAMASHITA J, YAMADA T. Over 1000 V n-ch LDMOSFET and p-ch LIGBT with JI RESURF structure and multiple floating field plate[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 1995:455-459. [82] SHIMIZU K, RITTAKU S, MORITANI J. A 600 V HVIC process with a built-in EPROM which enables new concept gate driving[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2004:379-382. [83] ENDO K, BABA Y, UDO Y, et al. A 500 V 1 A 1-chip inverter IC with a new electric field reduction structure[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 1994:379-383. [84] MURRAY A F J, LANE W A. Optimization of interconnection-induced breakdown voltage in junction isolated IC's using biased polysilicon field plates[J]. IEEE Transactions on Electron Devices, 1997, 44(1):185-189. [85] FUJIHIRA T, YANO Y, OBINATA S, et al. Self-shielding: new high-voltage inter-connection technique for HVICs[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 1996:231-234. [86] FUJIHIRA T, YANO Y, OBINATA S, et al. High voltage integrated circuit, high voltage junction terminating structure, and high voltage MIS transistor: US6124628[P]. 2000-9-26. [87] KIM S L, JEON C K, KIM M H, et al. Realization of robust 600 V high side gate drive IC with a new isolated self-shielding structure[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2005:143-146. [88] KIM S L, JEON C K, KIM M S, et al. 1200 V interconnection technique with isolated self-shielding structure[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2006:1 - 4. [89] 乔明, 方健, 李肇基,等. 基于耦合式电平位移结构的高压集成电路[J].半导体学报, 2006, 27(11):2040-2045. [90] GROEGER J, SCHINDLER A, WICHT B, et al. Optimized dv/dt, di/dt sensing for a digitally controlled slope shaping gate driver[C]. IEEE Applied Power Electronics Conference and Exposition, 2017:3564-3569. [91] PARK S, JAHNS T M. Flexible dv/dt and di/dt control method for insulated gate power switches[C]. IEEE Industry Applications Conference, 2003:657-664. [92] SHU L, ZHANG J M, PENG F Z, et al. Active current source IGBT gate drive with closed-loop di/dt and dv/dt control[J]. IEEE Transactions on Power Electronics, 2017, 32(5):3787-3796. [93] SAWEZYN H. Lowering the drawbacks of slowing down di/dt and dv/dt of insulated gate transistors[C]. International Conference on Power Electronics Machines and Drives, 2002:551-556. [94] CHEN W, LIU C, SHI Y, et al. Design and characterization of high di/dt CS-MCT for pulse power applications[J]. IEEE Transactions on Electron Devices, 2017, 64(10):4206-4212. [95] DAI C T, KER M D. Investigation of unexpected latchup path between HV-LDMOS and LV-CMOS in a 0.25- μm 60-V/5-V BCD technology[J]. IEEE Transactions on Electron Devices, 2017, 64(8):3519-3523. [96] BUCCELLA P, STEFANUCCI C, SALLESE J M, et al. Active guard ring characterization for smart power ICs[C]. IEEE International Conference Mixed Design of Integrated Circuits and Systems, 2016:305-309. [97] LEE J H, CHEN S H, TSAI Y T, et al. The influence of NBL layout and LOCOS space on component ESD and system level ESD for HV-LDMOS[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2007:173-176. [98] WANG L, WANG J, LI R, et al. Novel STI scheme and layout design to suppress the kink effect in LDMOS transistors[J]. Semiconductor Science and Technology, 2008, 23(7):075025. [99] QI Z, QIAO M, LIANG L F, et al. High trigger current NPN transistor with excellent double-snapback performance for high-voltage output ESD protection[J]. IEEE Electron Device Letters, 2020, 41(3):453-456. [100] QI Z, QIAO M, LIANG L F, et al. Novel silicon-controlled rectifier with snapback-free performance for high-voltage and robust ESD protection[J]. IEEE Electron Device Letters, 2019, 40(3):435-438. [101] KNIFFIN, M.L, THOMA, R, VICTORY, J. Physical compact modeling of layout dependent metal resistance in integrated LDMOS power devices[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2000:173-176. [102] QIAO M, WANG Z, WANG H, et al. Edge termination design of a 700-V triple RESURF LDMOS with n-type top layer[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2017:319-322. [103] 乔明,肖倩倩,余洋,等. 横向高压功率器件的结终端结构: ZL201610728940.1[P]. 2019-09-27. [104] 乔明, 何林蓉, 童成伟,等. 一种抗闩锁版图结构: ZL201910844970.2[P]. 2019-12-03. [105] KOISHIKAWA Y. Enhancement of breakdown voltage in MOSFET semiconductor device: US5633521[P]. 1997-05-27. [106] HUANG A Q, SUN N X, ZHANG B, et al. Low voltage power devices for future VRM[C]. IEEE International Symposium on Power Semiconductor Devices and ICs, 1998:395-398. [107] HSHIEH F I, KOON C S, TSUI Y M. Tsui, trench MOSFET with structure having low gate charge: US6472708B1[P]. 2002-10-29. [108] CALAFUT D S. Power MOS device with improved gate charge performance: US6534825B2[P]. 2003-3-18. [109] QIAO M, WANG Z K, FANG D. et al. Split-gate enhanced power MOS device. US10720524B1[P].2020-07-21. [110] QIAO M, WANG Z K, WANG R D. et al. Power semiconductor devices: US10608106B2[P]. 2020-3-31. [111] SAITO W, NITTA T, KAKIUCHI Y, et al. Suppression of dynamic on-resistance increase and gate charge measurements in high-voltage GaN-HEMTs with optimized field-plate structure[J]. IEEE Transactions on Electron Devices, 2007, 54(8):1825-1830. [112] SAXENA R S, KUMAR M J. Polysilicon spacer gate technique to reduce gate charge of a trench power MOSFET[J]. IEEE Transactions on Electron Devices, 2012, 59(3):738-744. [113] PETRUZZELLO J, LETAVIC T J, SIMPSON M. SOI LDMOS structure with improved switching characteristics: US6468878B1[P]. 2002-10-22. [114] QIAO M, LIANG L, ZU J, et al. A review of high-voltage integrated power device for AC/DC switching application[J]. Microelectronic Engineering, 2020, 232:111416. [115] ZHOU X, YUAN Z Y, DENG X, et al. Investigation on 4H SiC MOSFET with three-section edge termination[J]. Superlattices and Microstructures, 2018, 124:139-144. [116] HE Y T, QIAO M, WANG Z, et al. A low turnoff loss SOI LIGBT with p-buried layer and double gates[C]. IEEE International Conference on Solid-State and Integrated Circuit Technology, 2016:1092-1094. [117] QIAO M, ZHANG B, LI Z J, et al. Analysis of the back-gate effect on the breakdown behavior of lateral high-voltage SOI transistors[J]. Acta Physica Sinica, 2007, 56(7):3990-3995. [118] LIM H T, UDREA F, GARNER D M, et al. Modelling of self-heating effect in thin SOI and Partial SOI LDMOS power devices[J]. Solid State Electronics, 1999, 43(7):1267-1280. [119] UDREA F, POPESCU A, MILNE W. Breakdown analysis in JI, SOI and partial SOI power structures[C]. IEEE International SOI Conference, 1997:102-103. [120] TADIKONDA R, HARDIKAR S, NARAYANAN E M S. Realizing high breakdown voltages (>600 V) in partial SOI technology[J]. Solid State Electronics, 2004, 48(9):1655-1660. |
[1] | 蒋红利, 江月艳, 孙志欣, 邵卓, 钟涛, 高欣宇. 一种高压驱动器的抗辐射加固设计[J]. 电子与封装, 2023, 23(8): 80303-. |
[2] | 周淼, 汤亮, 何逸涛, 陈辰, 周锌. 一种部分超结型薄层SOI LIGBT器件的研究*[J]. 电子与封装, 2022, 22(9): 90403-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数: 当日访问总数: 当前在线:
版权所有 © 2019-2024 中国电子科技集团公司第五十八研究所 苏ICP备11028747号
地址:江苏省无锡市滨湖区惠河路5号 邮编:214035 电话:0510-85860386 电子邮箱:ep.cetc58@163.com
本系统由北京玛格泰克科技发展有限公司设计开发