中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2021, Vol. 21 ›› Issue (2): 020204 . doi: 10.16257/j.cnki.1681-1070.2021.0201

所属专题: 人工智能

• 封装、组装与测试 • 上一篇    下一篇

基于有限元分析和机器学习的跌落所致封装结构力学行为预测

张筱迪1,毛明晖1,卢昶衡2,王文武1,贾冯睿3,龙旭2   

  1. 1. 辽宁石油化工大学土木工程学院、 辽宁 抚顺 113001;2. 西北工业大学力学与土木建筑学院,先进电子封装材料与结构研究中心,西安 710021;3. 浙江清华长三角研究院,浙江 嘉兴 314006
  • 收稿日期:2020-11-20 出版日期:2021-02-24 发布日期:2021-01-07
  • 作者简介:张筱迪(1995—),女,陕西商洛人,研究生在读,研究方向为结构动态力学性能及其可靠性。

Prediction ofMechanical Behavior of Package Structure Subjected to Drop Impact Based onFinite Element Analysis and Machine Learning

ZHANG Xiaodi1, MAO Minghui1, LU Changheng2, WANG Wenwu1,   

  1. JIA Fengrui3,LONG Xu2
  • Received:2020-11-20 Online:2021-02-24 Published:2021-01-07

摘要: 目前电子封装行业中,在进行封装结构力学可靠性研究时需要开展大量的有限元仿真分析,存在仿真模型建模流程复杂且计算过程漫长的常见问题。鉴于此方面的技术瓶颈,首先使用ABAQUS有限元软件对封装结构跌落过程动力响应进行数值模拟并获取特征候选值,建立了4×3的以抗跌落可靠性评估的关键特征变量为输入特征值和以应力和等效塑性应变为输出特征值的数据组。在有限元分析结果基础上,应用相关性驱动神经网络的机器学习方法对数据组进行训练,进而得到相应预测模型。最后,通过与数值模拟结果进行对比,验证了所提出神经网络预测结果与有限元模拟结果具有很好的吻合度。结果表明,基于有限元仿真模型的机器学习方法,在预测封装结构复杂工况下力学性能可靠性方面具有巨大的潜力。

关键词: 封装结构, 力学可靠性, 有限元模拟, 机器学习, 动力响应

Abstract: In the electronic packaging industry, the evaluation of mechanical reliability of the packaging structures is usually studied by means of finite element simulations, which is however considerably time-consuming due to modeling creation and iterative analysis. To eliminate these technical limitations, the dynamic response of the packaging structure during the drop process was firstly simulated by ABAQUS in the present study, and the values of feature candidates were obtained to construct a 4×3 data set. In fact, the main feature variables of the drop resistance evaluation is taken as the input features, while the stress and equivalent plastic strain are taken as the output feature values. Consequently, the data set was trained by the correlation-driven neural network to obtain the corresponding machine-learning based prediction model. Finally, compared with the finite element simulation, the predicted results of machine-learning based neural network are similar to those of finite element simulation results. The results of this paper show that the machine learning method based on finite element simulations has great potential in predicting the reliability of the mechanical performance of the packaging structure under complicated working conditions.

Key words: packagingstructure, mechanicalreliability, finiteelementmethod, machinelearning, dynamicresponse

中图分类号: