[1] KINZER D, OLIVER S. Monolithic HV GaN power
ICs: performance and application[J]. IEEE Power Electronics Magazine, 2016,
3(3): 14-21. [2] JONES E A, WANG F F, COSTINETT D. Review of
commercial GaN power devices and GaN-based converter design challenges[J]. IEEE
Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3):
707-719. [3] KINZER D. GaN power IC technology: Past, present,
and future[C]//2017 29th International Symposium on Power Semiconductor Devices
and IC's (ISPSD). IEEE, 2017: 19-24. [4] SUN R, LIANG Y C, YEO Y C, et al. Design of
power integrated circuits in full AlGaN/GaN MIS‐HEMT
configuration for power conversion[J]. Physica Status Solidi (a), 2017, 214(3):
1600562. [5] SINGHAL S, CHAUDHARI A, HANSON A W, et al.
GaN-on-Si reliability: A comparative study between process platforms[C]// Reliability
of Compound Semiconductors ROCS Workshop 2006. IEEE, 2006: 21-24. [6] RODRIGUEZ M, ZHANG Y, MAKSIMOVI? D.
High-frequency PWM buck converters using GaN-on-SiC HEMTs[J]. IEEE Transactions
on Power Electronics, 2013, 29(5): 2462-2473. [7] ZHANG Y, RODRíGUEZ M, MAKSIMOVI? D. Very high
frequency PWM buck converters using monolithic GaN half-bridge power stages
with integrated gate drivers[J]. IEEE Transactions on Power Electronics, 2015,
31(11): 7926-7942. [8] MEHROTRA V, ARIAS A, NEFT C, et al. GaN
HEMT-based >1-GHz speed low-side gate driver and switch monolithic process
for 865-MHz power conversion applications[J]. IEEE Journal of Emerging and
Selected Topics in Power Electronics, 2016, 4(3): 918-925. [9] CHEN K J. GaN smart power chip
technology[C]//2009 IEEE International Conference of Electron Devices and Solid-State
Circuits (EDSSC). IEEE, 2009: 403-407. [10] SAITO W, TAKADA Y, KURAGUCHI M, et al.
Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN
HEMT for power electronics applications[J]. IEEE Transactions on Electron Devices,
2006, 53(2): 356-362. [11] TANG G, KWAN M H, SU R Y, et al. High-capacitance-density
p-GaN gate capacitors for high-frequency power integration[J]. IEEE Electron
Device Letters, 2018, 39(9): 1362-1365. [12] WONG K Y, CHEN W, LIU X, et al. GaN smart
power IC technology[J]. physica status solidi (b), 2010, 247(7): 1732-1734. [13] OTSUKA N, KAWAI Y, NAGAI S. Recent progress
in GaN devices for power and integrated circuit[C]//2017 IEEE 12th
International Conference on ASIC (ASICON). IEEE, 2017: 928-931. [14] CHEN K J, KWAN A M H, JIANG Q. Technology
for III-N heterogeneous mixed-signal electronics[J]. Physica Status Solidi (a),
2014, 211(4): 769-774. [15] WONG K Y, CHEN W, CHEN K J. Integrated
voltage reference and comparator circuits for GaN smart power chip
technology[C]//2009 21st International Symposium on Power Semiconductor Devices
& IC's. IEEE, 2009: 57-60. [16] LIU X, CHEN K J. GaN single-polarity power
supply bootstrapped comparator for high-temperature electronics[J]. IEEE Electron
Device Letters, 2010, 32(1): 27-29. [17] KWAN A M H, GUAN Y, LIU X, et al. A highly
linear integrated temperature sensor on a GaN smart power IC platform[J]. IEEE
Transactions on Electron Devices, 2014, 61(8): 2970-2976. [18] TANG G, KWAN A M H, WONG R K Y, et al.
Digital integrated circuits on an E-mode GaN power HEMT platform[J]. IEEE
Electron Device Letters, 2017, 38(9): 1282-1285. [19] ZHU M, MATIOLI E. Monolithic integration of
GaN-based NMOS digital logic gate circuits with E-mode power GaN
MOSHEMTs[C]//2018 IEEE 30th International Symposium on Power Semiconductor
Devices and ICs (ISPSD). IEEE, 2018: 236-239. [20] CHEN W, WONG K Y, CHEN K J. Single-chip
boost converter using monolithically integrated AlGaN/GaN lateral field-effect
rectifier and normally off HEMT[J]. IEEE electron device letters, 2009, 30(5):
430-432. [21] UJITA S, KINOSHITA Y, UMEDA H, et al. A
fully integrated GaN-based power IC including gate drivers for high-efficiency
DC-DC converters[C]//2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).
IEEE, 2016: 1-2. [22] UJITA S, KINOSHITA Y, UMEDA H, et al. A
compact GaN-based DC-DC converter IC with high-speed gate drivers enabling high
efficiencies[C]//2014 IEEE 26th International Symposium on Power Semiconductor
Devices & IC's (ISPSD). IEEE, 2014: 51-54. [23] REUSCH D, STRYDOM J, GLASER J. Improving
high frequency DC-DC converter performance with monolithic half bridge GaN
ICs[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2015:
381-387. [24] GIANDALIA M, ZHANG J, RIBARICH T. 650 V all GaN?
power IC for power supply applications[C]//2016 IEEE 4th Workshop on Wide
Bandgap Power Devices and Applications (WiPDA). IEEE, 2016: 220-222. [25] FICHTENBAUM N, GIANDALIA M, SHARMA S, et al.
Half-bridge GaN power ICs: Performance and application[J]. IEEE Power Electronics
Magazine, 2017, 4(3): 33-40. [26] NAKAJIMA A, NISHIZAWA S, OHASHI H, et al.
GaN-based monolithic power integrated circuit technology with wide operating
temperature on polarization-junction platform[C]//2015 IEEE 27th International
Symposium on Power Semiconductor Devices & IC's (ISPSD). IEEE, 2015:
357-360. [27] NAKAJIMA A, NISHIZAWA S, KUBOTA S, et al. An
overview of GaN-based monolithic power integrated circuit technology on
polarization-junction platform[C]//2015 IEEE Compound Semiconductor Integrated
Circuit Symposium (CSICS). IEEE, 2015: 1-4. [28] CHU R, CAO Y, CHEN M, et al. An experimental
demonstration of GaN CMOS technology[J]. IEEE Electron Device Letters, 2016,
37(3): 269-271. [29] PYTEL S G, LENTIJO S, KOUDYMOV A, et al.
AlGaN/GaN MOSHFET integrated circuit power converter[C]//2004 IEEE 35th Annual
Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551). IEEE, 2004,
1: 579-584. [30] SEPAHVAND A, ZHANG Y, MAKSIMOVIC D. High
efficiency 20-400 MHz PWM converters using air-core inductors and monolithic
power stages in a normally-off GaN process[C]//2016 IEEE Applied Power
Electronics Conference and Exposition (APEC). IEEE, 2016: 580-586. [31] CAI Y, CHENG Z, TANG W C W, et al. Monolithic
integration of enhancement-and depletion-mode AlGaN/GaN HEMTs for GaN digital
integrated circuits[C]//IEEE International Electron Devices Meeting, 2005. IEDM
Technical Digest. IEEE, 2005, 4:774. [32] CAI Y, CHENG Z, YANG Z, et al.
High-temperature operation of AlGaN/GaN HEMTs direct-coupled FET logic (DCFL)
integrated circuits[J]. IEEE electron device letters, 2007, 28(5): 328-331. [33] LIU X, CHEN K J. Single-Polarity Power
Supply Bootstrapped Comparator for GaN smart power technology[C]//2010 IEEE
Compound Semiconductor Integrated Circuit Symposium (CSICS). IEEE, 2010: 1-4. [34] REINER R, WALTEREIT P, WEISS B, et al.
Monolithically integrated power circuits in high-voltage GaN-on-Si heterojunction
technology[J]. IET Power Electronics, 2017, 11(4): 681-688. [35] SUN R, LIANG Y C, YEO Y C, et al. Au-free
AlGaN/GaN MIS-HEMTs with embedded current sensing structure for power switching
applications[J]. IEEE Transactions on Electron Devices, 2017, 64(8): 3515-3518. [36] SUN R, LIANG Y C, YEO Y C, et al. All-GaN
Power Integration: Devices to Functional Subcircuits and Converter ICs[J]. IEEE
Journal of Emerging and Selected Topics in Power Electronics, 2019, 8(1):
31-41. [37] ZHENG Z, SONG W, ZHANG L, et al. Monolithically integrated
GaN ring oscillator based on high-performance complementary logic inverters[J].
IEEE Electron Device Letters, 2020, 42(1): 26-29. [38] KONG Y, ZHOU J, KONG C, et al. Monolithic
integration of E/D-mode AlGaN/GaN MIS-HEMTs[J]. IEEE Electron Device Letters,
2014, 35(3): 336-338. [39] WANG Y H, LIANG Y C, SAMUDRA G S, et al.
High output swing monolithic inverter with ED mode MIS-HEMTs for GaN power
integrated circuits[C]//2015 IEEE 11th International Conference on Power
Electronics and Drive Systems. IEEE, 2015: 585-588. [40] WANG H, KWAN A M H, JIANG Q, et al. A GaN pulse
width modulation integrated circuit for GaN power converters[J]. IEEE
Transactions on Electron Devices, 2015, 62(4): 1143-1149. [41] LIAO C H, YANG S H, LIAO M Y, et al. 3.8 A 23.6
ppm/°C Monolithically integrated GaN reference voltage design with temperature
range from?50°C to 200°C and supply voltage range from 3.9 to 24 V[C]//2020
IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 2020: 72-74. [42] KWAN A M H, CHEN K J. A gate overdrive
protection technique for improved reliability in AlGaN/GaN enhancement-mode
HEMTs[J]. IEEE Electron Device Letters, 2012, 34(1): 30-32. [43] XU H, TANG G, WEI J, et al. Integrated High-Speed
Over-Current Protection Circuit for GaN power transistors[C]//2019 31st International
Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2019: 275-278. [44] SUN R, LIANG Y C, YEO Y C, et al. Design and
experimental demonstration of integrated over-current protection circuit for
GaN DC-DC converters[J]. IEEE Journal of Emerging and Selected Topics in Power
Electronics, 2019. [45] KWAN A M H, LIU X, CHEN K J. Integrated
gate-protected HEMTs and mixed-signal functional blocks for GaN smart power
ICs[C]//2012 International Electron Devices Meeting. IEEE, 2012: 7.3.1-7.3.4. [46] CHEN W, WONG K Y, CHEN K J. Monolithic
integration of lateral field-effect rectifier with normally-off HEMT for
GaN-on-Si switch-mode power supply converters[C]//2008 IEEE International
Electron Devices Meeting. IEEE, 2008: 1-4. [47] UEMOTO Y, MORITA T, IKOSHI A, et al. GaN
monolithic inverter IC using normally-off gate injection transistors with
planar isolation on Si substrate[C]//2009 IEEE International Electron Devices
Meeting (IEDM). IEEE, 2009: 1-4. [48] REINER R, WALTEREIT P, WEISS B, et al.
Monolithic GaN-on-Si half-bridge circuit with integrated freewheeling
diodes[C]//PCIM Europe 2016; International Exhibition and Conference for Power
Electronics, Intelligent Motion, Renewable Energy and Energy Management. VDE,
2016: 1-7. [49] WEISS B, REINER R, POLYAKOV V, et al.
Substrate biasing effects in a high-voltage, monolithically-integrated
half-bridge GaN-Chip[C]//2017 IEEE 5th Workshop on Wide Bandgap Power Devices
and Applications (WiPDA). IEEE, 2017: 265-272. [50] MOENCH S, COSTA M, BARNER A, et al.
Monolithic integrated quasi-normally-off gate driver and 600 V GaN-on-Si
HEMT[C]//2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications
(WiPDA). IEEE, 2015: 92-97. [51] TANG G, KWAN M H, ZHANG Z, et al.
High-speed, high-reliability GaN power device with integrated gate driver[C]//2018
IEEE 30th International Symposium on Power Semiconductor Devices and ICs
(ISPSD). IEEE, 2018: 76-79. [52] MAKSIMOVI? D, ZHANG Y, RODRíGUEZ M. Monolithic
very high frequency GaN switched-mode power converters[C]//2015 IEEE Custom
Integrated Circuits Conference (CICC). IEEE, 2015: 1-4.
|