中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装

• 综述 •    下一篇

面向手势识别的CMOS图像读出电路设计

李浩钰,顾晓峰,虞致国   

  1. 江南大学集成电路学院,江苏 无锡  214401
  • 收稿日期:2025-01-08 修回日期:2025-02-10 出版日期:2025-02-17 发布日期:2025-02-17
  • 通讯作者: 虞致国
  • 基金资助:
    江苏省重点研发计划产业前瞻与关键核心技术项目(BE2023019-3)

Readout Circuit for Hand Gesture Recognition in CMOS Image Sensors

LI Haoyu, GU Xiaofeng, YU Zhiguo   

  1. School of Integrated Circuits, Jiangnan University, Wuxi 214401, China
  • Received:2025-01-08 Revised:2025-02-10 Online:2025-02-17 Published:2025-02-17
  • Contact: Zhi-Guo YU

摘要: 手势识别技术在人机交互和虚拟现实领域获得了极大关注,然而,基于视觉的手势识别系统仍受芯片面积和功耗的制约。提出一种适用于3×3卷积核滑动卷积运算的读出电路,其中读出电路包括卷积电路和修正线性单元(ReLU)-最大池化(MaxPool)双功能电路。卷积电路可以实现正负权重可配置,利用了电流加权在电流域实现高精度的卷积运算。ReLU-MaxPool双功能电路可同时实现ReLU和池化功能,采用开关电容、寄存器以及定制化逻辑电路,结合时序极大提高了工作效率和运行速度。电路基于55 nm CMOS工艺实现,电源供电电压为2.5 V,卷积电路在不同工艺角下输出误差为0.25%。卷积电路经过蒙特卡洛仿真,误差百分比的均值为0.05%,方差为1.26%。对电路误差进行建模代入手势识别算法,测试集准确率从理想算法模型的91.66%下降到了90.62%,对结果影响仅有1.04%。

关键词: 手势识别, 神经网络, CMOS图像传感器, 读出电路

Abstract: Hand gesture recognition technology has garnered significant attention in the fields of human-computer interaction and virtual reality. However, vision-based gesture recognition systems is still limited by chip area and power consumption. A readout circuit suitable for the sliding convolution operation of a 3×3 convolution kernel is proposed. It includes convolution and ReLU-MaxPool dual-function circuit. The convolution circuit can achieve configurable positive and negative weights, utilizing current weighting to perform high-precision convolution operations in the current domain. The ReLU-MaxPool dual-function circuit can simultaneously achieve ReLU and MaxPool functions. It employs switch-capacitor, registers, and customized logic circuits, and combines timing design to greatly improve work efficiency and operating speed. The proposed circuit is implemented based in 55 nm CMOS process with a supply voltage of 2.5 V. The output error of the convolution circuit under different process corners is 0.25%. After Monte Carlo simulation, the mean percentage error of the convolution circuit is 0.05%, with a variance of 1.26%. By modeling the circuit errors and incorporating them into the gesture recognition algorithm, the accuracy on the test set decreased from the ideal algorithm model's 91.66% to 90.62%, with only a 1.04% impact on the results.

Key words: hand gesture recognition, convolutional neural network (CNN), CMOS image sensor, readout circuit