[1] ROBERTS L G. Machine perception of three-dimensional solids[D]. Massachusetts: Massachusetts Institute of Technology, 1963. [2] LIENHART R, MAYDT J. An extended set of haar-like features for rapid object detection[C]// Proceedings International Conference on Image Processing. IEEE, 2002, 1: I. [3] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE, 2005, 1: 886-893. [4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. [5] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [6] GIRSHICK R. Fast R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448. [7] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems, 2015: 91-99. [8] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. [9] DAI J, LI Y, HE K, et al. R-FCN: Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems, 2016: 379-387. [10] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969. [11] CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162. [12] ZHAO Q, SHENG T, WANG Y, et al. M2det: A single-shot object detector based on multi-level feature pyramid network[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 9259-9266. [13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. [14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. Springer, Cham, 2016: 21-37. [15] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271. [16] REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018. [17] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal Speed and Accuracy of Object Detection[J]. arXiv Preprint arXiv:2004.10934, 2020. [18] YUN S, HAN D, OH S J, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features[C]// Proceedings of the IEEE International Conference on Computer Vision. 2019: 6023-6032. [19] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391. [20] MISRA D. Mish: A self regularized non-monotonic neural activation function[J]. arXiv Preprint arXiv: 1908.08681, 2019. [21] YANG J, FU X, HU Y, et al. PanNet: A deep network architecture for pan-sharpening[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017: 5449-5457. [22] YU J, JIANG Y, WANG Z, et al. Unitbox: An advanced object detection network[C]// Proceedings of the 24th ACM international conference on Multimedia, 2016: 516-520. [23] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 658-666. [24] ZHENG Z, WANG P, LIU W, et al. Distance-IoU Loss: Faster and better learning for bounding box regression[C]// AAAI, 2020: 12993-13000. [25] HUANG L, YANG Y, DENG Y, et al. Densebox: Unifying landmark localization with end to end object detection[J]. arXiv Preprint arXiv:1509.04874, 2015. [26] ZHOU X, WANG D, KR?HENBüHL P. Objects as points[J]. arXiv preprint arXiv:1904.07850, 2019. [27] ZHOU X, ZHUO J, KRAHENBUHL P. Bottom-up object detection by grouping extreme and center points[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 850-859. [28] LIU W, LIAO S, REN W, et al. High-level semantic feature detection: A new perspective for pedestrian detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 5187-5196. [29] LAW H, DENG J. Cornernet: Detecting objects as paired keypoints[C]// Proceedings of the European Conference on Computer Vision (ECCV), 2018: 734-750. [30] DUAN K, BAI S, XIE L, et al. Centernet: Keypoint triplets for object detection[C]// Proceedings of the IEEE International Conference on Computer Vision, 2019: 6569-6578. [31] ZHU C, HE Y, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 840-849. [32] TIAN Z, SHEN C, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]// Proceedings of the IEEE International Conference on Computer Vision, 2019: 9627-9636. [33] KONG T, SUN F, LIU H, et al. Foveabox: Beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398. [34] VICENTE S, CARREIRA J, AGAPITO L, et al. Reconstructing pascal VOC[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 41-48. [35] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]// European Conference on Computer Vision. Springer, Cham, 2014: 740-755. [36] CAO J, CHOLAKKAL H, ANWER R M, et al. D2Det: Towards high quality object detection and instance segmentation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11485-11494. [37] SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]/ /Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 761-769. [38] LI B, LIU Y, WANG X. Gradient harmonized single-stage detector[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 8577-8584. [39] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Advances in neural Information Processing Systems, 2014: 2672-2680. [40] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017: 2223-2232. [41] CHOI Y, UH Y, YOO J, et al. Stargan v2: Diverse image synthesis for multiple domains[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8188-8197. [42] FU K, ZHANG T, ZHANG Y, et al. Meta-SSD: Towards fast adaptation for few-shot object detection with meta-learning[J]. IEEE Access, 2019(7): 77597-77606.
|