[1] |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1-9.[2]HINTON G E, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97.
|
[3] |
ZHU J, HUANG T, CHEN W, et al. The future of artificial intelligence in China[J]. Communications of the ACM, 2018, 61(11), 44-45.
|
[4] |
王茜. 巨头抢滩计算机视觉入口,中国该做什么?[N]通信产业报,2017-12-11(009).
|
[5] |
ISLAM N, ISLAM Z, NOOR N. A survey on optical character recognition system[J]. Journal of Information & Communication Technology, 2016, 10(2): 1-4.
|
[6] |
RIZVI M, RAZA H, TAHZEEB S, et al. Optical character recognition based intelligent database management system for examination process control[C]. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST - 2019), 2019.
|
[7] |
DENG J, GUO J, ZAFEIRIOU S, et al. ArcFace: additive angular margin loss for deep face recognition[OL].(2019- 12-09)[2019-11-26].https://arxiv.org/abs/1801.07698.
|
[8] |
SCHERHAG U, RATHGEB C, MERKLE J, et al. Face recognition systems under morphing attacks: a survey[J]. IEEE Access, 2019: 23012-23026.
|
[9] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Computer Vision and Pattern Recognition, 2016: 770-778.
|
[10] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[11] |
KRIZHEVSKY A , SUTSKEVER I , HINTON G. Imagenet classification with deep convolutional neural networks[C]. In Advances in Neural Information Processing Systems, 2012:1097-1105.
|
[12] |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[OL]. (2014-09-17)[2019-11-26]. https://arxiv. org/abs/1409.4842.
|
[13] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. International Conference on Learning Representations, 2015.
|
[14] |
HOWARD A, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[OL]. (2017-04-17)[2019-11-26]. https://arxiv.org/abs/1704. 04861.
|
[15] |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al.SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[OL].(2016-11-04) [2019-11-26]. https://arxiv.org/abs/1602.07360.
|
[16] |
COURBARIAUX M, HUBARA I, SOUDRY D, et al. Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1[OL]. (2016-03-17) [2019-11-26]. https://arxiv.org/abs/1602.02830.
|
[17] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]. European Conference on Computer Vision, 2016: 21-37.
|
[18] |
邢浩强,杜志岐,苏波. 基于改进SSD的行人检测方法[J]. 计算机工程, 2018, 44(11): 228-233, 238.
|
[19] |
GIRSHICK R B. Fast R-CNN[C]. International Conference on Computer Vision, 2015: 1440-1448.
|
[20] |
REN S, HE K, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]. Neural Information Processing Systems, 2015: 91-99.
|
[21] |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]. International Conference on Computer Vision, 2017: 2980-2988.
|
[22] |
CHEN L, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. European Conference on Computer Vision, 2018: 833-851.
|
[23] |
SHI B, BAI X, YAO C, et al. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(11): 2298-2304.
|
[24] |
YANG F, CHOI W, LIN Y, et al. Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers[C]. Computer Vision and Pattern Recognition, 2016: 2129-2137.
|
[25] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. International Conference on Neural Information Processing Systems, 2014.
|
[26] |
RADFORD A , METZ L , CHINTALA S . Unsupervised representation learning with deep convolutional generative International Conference on Computer Vision, 2017: 2242- 2251.
|
[28] |
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]. Computer Vision and Pattern Recognition, 2019: 5693-5703.
|
[29] |
YANG Z P, PAN J Z, LUO L J, et al. Extreme relative pose estimation for RGB-D scans via scene completion[OL]. (2019-01-05)[2019-11-26]. https://arxiv.org/abs/1901.00063.
|
[30] |
高晨兰,朱嘉钢. 静止背景下的人体行为识别方法[J]. 计算机工程,2017,43(10): 192-197.
|
[31] |
CARREIRA J , ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset[OL]. (2018-02-12) [2019-11-26]. https://arxiv.org/abs/1705.07750v1.
|
[32] |
RUSU R B, COUSINS S. 3D is here: point cloud library (PCL)[C]. International Conference on Robotics and Automation, 2011: 1-4.
|
[33] |
LORENSEN W E, CLINE, H. E. Marching cubes: a high resolution 3D surface construction algorithm[J]. ACM SIGGRAPH Computer Graphics 21(4):163-169.
|
[34] |
AMODEI D, HERNANDEZ D. Open AI, AI and compute[OL]. (2018-5-16)[2019-11-26]. https://openai.com/blog/ai-and- compute.
|
[35] |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
|
[36] |
JOUPPI N P, YOUNG C S, Patil N, et al. In-datacenter performance analysis of a tensor processing unit[J]. International Symposium on Computer Architecture, 2017, 45(2): 1-12.
|
[37] |
MEROLLA P A, ARTHUR J V, ALVAREZICAZA R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science, 2014, 345(6197): 668-673.
|
[38] |
孙欣. 现代智能作战概念浅析[J]. 舰船电子工程,2009, 29(8):9-13.
|
[39] |
吴世龙,吴世岭. 电子战武器装备的发展趋势与发展重点[J]. 舰船电子对抗, 2004, 27(6):3-5.
|
[40] |
董磊.世界进入人工智能战争时代:机器自主杀人[OL]. (2017-06-02)[2019-11-26]. http://www.sohu.com/a/115401680_465915. International Conference on Computer Vision, 2017: 2242- 2251.
|