中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2022, Vol. 22 ›› Issue (1): 010307 . doi: 10.16257/j.cnki.1681-1070.2022.0114

所属专题: 人工智能

• 电路与系统 • 上一篇    下一篇

基于深度学习的目标检测研究与应用综述

吕璐;程虎;朱鸿泰;代年树   

  1. 中科芯集成电路有限公司,江苏 无锡 214072
  • 收稿日期:2021-06-21 出版日期:2022-01-25 发布日期:2021-09-18
  • 作者简介:吕璐(1992—),男,河南信阳人,硕士,工程师,主要从事图像处理、深度学习、目标检测领域的工作。

Progress of Research and Application of Object DetectionBased on Deep Learning

LYU Lu, CHENG Hu, ZHU Hongtai, DAI Nianshu   

  1. China KeySystem &Integrated Circuit Co., Ltd., Wuxi 214072, China
  • Received:2021-06-21 Online:2022-01-25 Published:2021-09-18

摘要: 基于深度学习的目标检测算法相较于传统的目标检测算法来说,对复杂场景的稳健性更强,是当前研究的热点方向。根据基于深度学习的目标检测算法的流程特点将其分为两阶段目标检测算法和单阶段目标检测算法,着重介绍了部分经典算法所解决的问题及其优缺点,并梳理了其在工业界的应用情况,最后对其仍存在的问题进行了讨论,对未来可能的发展趋势进行了展望。

关键词: 计算机视觉, 深度学习, 目标检测, 工业应用

Abstract: Compared with traditional object detection algorithms, object detection algorithms based on deep learning are more robust to complex scenes, and are currently a hot research direction. It is divided into two-stage detection algorithm and one-stage detection algorithm according to the process characteristics of the object detection algorithm based on deep learning. The problems solved by some of the classic algorithms and their advantages and disadvantages are introduced. Its application in the industry is sorted out. Finally, the remaining problems are discussed, and the possible future development trends are further prospected.

Key words: computervision, deeplearning, objectdetection, engineeringapplication

中图分类号: