[1] ARNAUD L, KARAM C, BRESSON N, et al. Three-dimensional hybrid bonding integration challenges and solutions toward multi-wafer stacking[J]. MRS Communications, 2020, 10(4): 549-557. [2] TU K N, LIU Y X. Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology[J]. Materials Science& Engineering R-Reports, 2019, 136: 1-12. [3] ROBERTAZZI R, SCHEURMAN M, WORDEMAN M, et al. Analytical Test of 3D Integrated Circuits[C]//2017 IEEE International Test Conference (ITC), Fort Worth, TX, USA,2017. [4] KIM J S, JUNGS B, YOON J W. Effect of Ni(P) thickness in Au/Pd/Ni(P) surface finish on the electrical reliability of Sn-3.0Ag-0.5Cu solder joints during current-stressing[J].Journal of Alloys and Compounds, 2021, 850: 156729. [5] QIAO Y Y, MA H T, YU F Y, et al. Quasi-in-situ observation on diffusion anisotropy dominated asymmetrical growth of Cu-Sn IMCs under temperature gradient[J]. ActaMaterialia, 2021, 217: 117168. [6] WANG J Q, QIAN W, WANG D J, et al. Study on Ar(5%H2) plasma pretreatment for Cu/Sn/Cu solid-state-diffusion bonding in 3D interconnection[C]// 2016 IEEE 66TH Electronic Componentsand Technology Conference (ECTC),Las Vegas, NV, USA 2016: 1765-1771. [7] KIM S W, FODOR F, HEYLEN N, et al. Novel Cu/SiCN surface topography control for 1 μm pitch hybrid wafer-to-wafer bonding[C]// 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA,2020: 216-222. [8] MANDA S, MATSUMOTOR R, SAITO S, et al. High-definition visible-SWIR InGaAs image sensor using Cu-Cu bonding of Ш-V to silicon wafer[C]// 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA,2019. [9] CHEN K N, TAN C S, FAN A. Morphology and bond strength of copper wafer bonding[J]. Electrochemicaland Solid State Letters,2014, 7(1): 14-16. [10] TANG Y S, CHANG Y J, CHEN K N. Wafer-level Cu-Cu bonding technology[J]. Microelectronics Reliability,2012, 52(2):312-320. [11] TSENG C H, TU K N, CHEN C. Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding[J].Scientific Reports, 2018, 8(1): 10671. [12] HAN H, LEE C, KIM Y J,et al. Cu to Cu direct bonding at low temperature with high density defect in electrodeposited Cu[J]. Applied Surface Science, 2020, 550(1): 149337. [13]HUANG Y T,WANG Y, LIU YX,et al. Thermal instability of nanocrystalline Cu enables Cu-Cu direct bonding in interconnects at low temperature[J]. Scripta Materialia, 2022, 220: 114900. [14] JHAN J J, WATAYA K, NISHIKAWA H, et al. Electrodeposition of nanocrystalline Cu for Cu-Cu direct bonding[J].Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104127. [15] LU L, SHEN Y F, CHEN X H, et al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304(5669): 422-426. [16] HSIAO H Y, LIU C M, LIN H W, et al. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper[J]. Science, 2012, 336(6084): 1007-1010. [17] LI Z G, GAO L Y, LI Z, et al. Regulating the orientation and distribution of nanotwins by trace of gelatin during direct current electroplating copper on titanium substrate[J]. Journal of Materials Science, 2022, 57(37): 17797-17811. [18] SUN F L, GAO L Y, LIU Z Q, et al. Electrodeposition and growth mechanism of preferentially orientated nanotwinned Cu on silicon wafer substrate[J]. Mater. Sci. Technology, 2018, 34(10) :1885-1890. [19] LIU C M, LIN H W, HUANG Y S, et al. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu[J]. Scientific Reports,2015,5: 9734. [20] HUANG J W, SHIE K C, LIU H C, et al. Copper-to-copper direct bonding using different (111) surface ratios of nanotwinned copper films[C]// 2019 International Conference on Electronics Packaging (ICEP),Niigata, Japan 2019: 52-55. [21] JUANG J Y, LU C L, CHEN K J, et al. Copper-to-copper direct bonding on highly (111)-oriented nanotwinned copper in no-vacuum ambient[J]. Scientific Reports, 2018, 8(1): 13910. [22] CHANG S Y, CHU Y C, TU K N, et al. Effect of anisotropic grain growth on improving the bonding strength of <111>-oriented nanotwinned copper films[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2021, 804: 140754. [23] LEE H S, KIM H J, JEONG H D. Approaches to sustainability in chemical mechanical polishing (CMP): A review[J]. International Journal OF Precision Engineeringand Manufacturing-Green Technology, 2022, 9(1): 349-367. [24] HUNG T H, KANG T C, MAO S Y, et al. Investigation of wet pretreatment to improve Cu-Cu bonding for hybrid bonding applications[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC),San Diego, CA, USA 2021: 700-705. [25]KIM T H, HOWLADER M M R, ITOH T, et al. Room temperature Cu-Cu direct bonding using surface activated bonding method[J]. Journal of Vacuum Science & Technology, 2003, 21(2): 449-453. [27] PARK H S, SEO H Y, KIM S E. Anti-oxidant copper layer by remote mode N2 plasma for low temperature copper-copper bonding[J]. Scientific Report, 2020, 10(1): 21720. [28] KANG Q S, WANG C X, ZHOU S C, et al. Low-temperature co-hydroxylated Cu/SiO2hybrid bonding strategy for a memory-centric chip architecture[J]. ACS Applied Materials and Interfaces, 2021,13(32): 38866-38876. [29] TAN C S, LIM D F, SINGH S G, et al. Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol[J]. Applied Physics Letters, 2009, 95(19): 192108. [30] TAN C S, LIM D F, ANG X F, et al. Low temperature Cu-Cu thermo-compression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement[J]. Microelectronics Reliability, 2012,52(2): 321-324. [31] HONG Z J, LIU D, HU H W, et al. Investigation of bonding mechanism for low-temperature Cu-Cu bonding with passivation layer[J]. Applied Surface Science, 2022, 592(8): 153243. [32] LIU D M, CHEN P C, TSAI Y C, et al. Low Temperature Cu to Cu Direct Bonding below 150℃ with Au Passivation Layer[C]//2019 International 3D Systems Integration Conference (3DIC), Sendai, Japan,2019:1-4. [33] LIU D M, KUO T Y, LIU Y W, et al. Investigation of low-temperature Cu-Cu direct bonding with Pt passivation layer in 3-D integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021,11(4): 573-578. [34] JANGAM S C, BAJWA A A, MOGERA U, et al. Fine-pitch (≤10 μm) direct Cu-Cu interconnects using in-situ formic acid vapor treatment[C]// 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA,2019: 620-627. [35] ROSHANGHIAS A, RODRIGUES A, SCHWARZ S, et al.Thermosonic direct Cu pillar bonding for 3D die stacking[J]. SN Applied Sciences, 2020, 2(6): 1091. [36] CHOU T C, YANG K M,LI J C, et al. Investigation of pillar-concave structure for low-temperature Cu-Cu direct bonding in 3-D/2.5-D heterogeneous integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(8): 1296-1303. [37] LIANG W, FOUNTAIN G, LEE B, et al. Directbond interconnect (DBI) for fine-pitch bonding in 3D and 2.5D integrated circuits[C]//2017 Pan Pacific Microelectronics Symposium (Pan Pacific),Kauai, HI,2017. [38] MASZARA W P, GOETZ G, CAVIGLIA A, et al. Bondingof silicon-wafersforsilicon-on-insulator[J]. Journalof Applied Physics, 1988, 64(10): 4943-4950. [39] SHIE K C, HSU P N, LI Y J, et al. Failure mechanisms of Cu-Cu bumps under thermal cycling[J]. Materials, 2021, 14(19): 5522. [40] SHIE K C, HSU P N, SHIE K C, et al. Effect of Bonding Strength on Electromigration Failure in Cu-Cu Bumps[J]. Materials, 2021, 14(21): 6394.
|