[1] 徐罕,朱亚军,戴飞虎,等. 晶圆级封装中的垂直互连结构[J]. 电子与封装,2021,21(10): 100107. [2] 张洪泽,田野,孟莹,等. 表面活化室温键合技术研究进展[J]. 机械工程学报,2022,58(2):136-146. [3] 王晨曦,戚晓芸,方慧,等. 紫外光活化低温键合研究进展[J]. 机械工程学报,2022,58(2):122-135. [4] FANG H, WANG C X, ZHOU S C, et al. Enhanced adhesion and anticorrosion of silk fibroin coated biodegradable Mg-Zn-Ca alloy via a two-step plasma activation[J]. Corrosion Science: The Journal on Environmental Degradation of Materials and its Control, 2020, 168(5): 108466. [5] LASKY J B. Wafer bonding for silicon-on-insulator technologies[J]. Applied Physics Letters, 1986, 48(1): 78-80. [6] SHIMBO M, FURUKAWA K, FUKUDA K, et al. Silicon-to-silicon direct bonding method[J]. Journal of Applied Physics, 1986, 60(8): 2987-2989. [7] TONG Q Y, GOSELE U. Semiconductor wafer bonding: science and technology[M]. New York: John Wiley & Sons Inc., 1999. [8] PLACH T, HINGERL K, TOLLABIMAZRAEHNO S, et al. Mechanisms for room temperature direct wafer bonding[J]. Journal of Applied Physics, 2013, 113(9): 094905. [9] LI D L, CUI X H, DU M, et al. Effect of combined hydrophilic activation on interface characteristics of Si/Si wafer direct bonding[J]. Processes, 2021, 9(9): 1599. [10] LI D L, SHANG Z G, WANG S Q, et al. Low temperature Si/Si wafer direct bonding using a plasma activated method[J]. Journal of Zhejiang University SCIENCE C, 2013, 14(4): 244-251. [11] BYUN K Y, FERAIN L, COLINGE C. Effect of free radical activation for low-temperature Si-Si wafer bonding[J]. Journal of The Electrochemical Society, 2010, 157(1): 109-112. [12] BYUN K Y, FERAIN I, FLEMING P, et al. Low temperature germanium to silicon direct wafer bonding using free radical exposure[J]. Applied Physics Letters, 2010, 96(10): 102110. [13] QI X, FANG H, et al. Investigation of plasma activation directions for low-damage direct bonding[J]. ECS Journal of Solid State Science and Technology, 2020, 9(8): 081004. [14] KANG Q S, WANG C X, NIU F F, et al. Single-crystalline SiC integrated onto Si-based substrates via plasma-activated direct bonding[J]. Ceramics International, 2020, 46(14): 22718-22726. [15] WANG C X, FANG H, ZHOU S C, et al. Recycled low-temperature direct bonding of Si/glass and glass/glass chips for detachable micro/nanofluidic devices[J]. Journal of Materials Science & Technology, 2020, 11: 156-167. [16] HOWLADER M R, KAGAMI G, LEE S H, et al. Sequential plasma-activated bonding mechanism of silicon/silicon wafers[J]. Journal of Microelectromechanical Systems: A Joint IEEE and ASME Publication on Microstructures, Microactuators, Microsensors, and Microsystems, 2010, 19(4): 840-848. [17] TABATA T, SANCHEZ L, LARREY V, et al. SiO2-SiO2 die-to-wafer direct bonding interface weakening[J]. Microelectronics Reliability, 2020, 107(4): 113589. [18] WANG C X, LIU Y N, LI Y, et al. Mechanisms for room-temperature fluorine containing plasma activated bonding[J]. ECS Journal of Solid State Science and Technology, 2017, 6(7): 373-378. [19] WANG C X, LIU Y N, SUGA T. A comparative study: Void formation in silicon wafer direct bonding by oxygen plasma activation with and without fluorine[J]. ECS Journal ofSolid State Science and Technology, 2017, 6(1): 7-13. [20] WANG C X, SUGA T. Investigation of fluorine containing plasma activation for room-temperature bonding of Si-based materials[J]. Microelectronics Reliability, 2012, 52(2): 347-351. [21] TAN C M, YU W B, WEI J. Comparison of medium-vacuum and plasma-activated low-temperature wafer bonding[J]. Applied Physics Letters, 2006, 88(11): 114102. [22] CHEN K N, FAN A, REIF R. Microstructure examination of copper wafer bonding[J]. Journal of Electronic Materials, 2001, 30(4): 331-335. [23] PARK M S, BAEK S J, KIM S D, et al. Argon plasma treatment on Cu surface for Cu bonding in 3D integration and their characteristics[J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2015, 324(1): 168-173. [24] CHUA S L, CHAN J M, GOH S C K, et al. Cu–Cu bonding in ambient environment by Ar/N2 plasma surface activation and its characterization[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(3): 596-605. [25] PARK H S, SEO H Y, KIM S E. Anti-oxidant copper layer by remote mode N2 plasma for low temperature copper-copper bonding[J]. Scientific Reports, 2020, 10(1): 21720. [26] BAKLANOV M R, SHAMIRYAN D G, T?KEI Z S. Characterization of Cu surface cleaning by hydrogen plasma[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures: Processing, Measurement and Phenomena, 2001, 19(4): 1201-1211. [27] TAN C S, LIM D F, SINGH S G, et al. Cu–Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol[J]. Applied Physics Letters, 2009, 95(19): 192108. [28] GHOSH T, KRUSHNAMURTHY K, PANIGRAHI A K, et al. Facile non thermal plasma based desorption of self assembled monolayers for achieving low temperature and low pressure Cu–Cu thermo-compression bonding[J]. RSC Advances, 2015, 5(125): 103643-103648. [29] CHOU T C, HUANG S Y, CHEN P J, et al. Electrical and reliability investigation of Cu-to-Cu bonding with silver passivation layer in 3-D integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(1): 36-42. [30] HUANG Y P, CHIEN Y S, TZENG R N, et al. Demonstration and electrical performance of Cu–Cu bonding at 150 °C with Pd passivation[J]. IEEE Transactions on Electron Devices, 2015, 62(8): 2587-2592. [31] LIU D M, CHEN P C, CHEN K N. A novel low-temperature Cu-Cu direct bonding with Cr wetting layer and Au passivation layer[C]. IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA: IEEE, 2020: 1322-1327. [32] HUANG Y P, CHIEN Y S, TZENG R N, et al. Novel Cu-to-Cu bonding with Ti passivation at 180 ℃ in 3-D integration[J]. IEEE Electron Device Letters, 2013, 34(12): 1551-1553. [33] GAO G L, MIRKARIMI L, WORKMAN T, et al. Low temperature Cu interconnect with chip to wafer hybrid bonding[C]// 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA: IEEE, 2019: 628-635. [34] 刘子玉.应用于三维集成的片间互连关键技术研究[D]. 北京:清华大学,2015. [35] KANG Q S, WANG C X, ZHOU S C, et al. Low-temperature Co-hydroxylated Cu/SiO2 hybrid bonding strategy for a memory-centric chip architecture[J]. ACS Applied Materials Interfaces, 2021, 13(32): 38866-38876. |