[1] IRADUKUNDA A C, HUITINK D R, LUO F. A review of advanced thermal management solutions and the implications for integration in high-voltage packages[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 256-271. [2] 薛云飞. 先进金属基复合材料[M]. 北京: 北京理工大学出版社, 2019. [3] SUNIL KUMAR REDDY K, KANNAN M, KARTHIKEYAN R, et al. Evaluation of thermal and mechanical properties of Al7475 alloy reinforced with SiC and graphite[J]. Materials Today: Proceedings, 2020, 26: 2691-2696. [4] CHU K, WANG X H, LI Y B, et al. Thermal properties of graphene/metal composites with aligned graphene[J]. Materials & Design, 2018, 140: 85-94. [5] XIE Z N, GUO H, ZHANG X M, et al. Enhancing thermal conductivity of diamond/Cu composites by regulating distribution of bimodal diamond particles[J]. Diamond and Related Materials, 2019, 100: 107564. [6] CHANG G, SUN F Y, DUAN J L, et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond[J]. Acta Materialia, 2018, 160: 235-246. [7] WU Y P, SUN Y N, LUO J B, et al. Microstructure of Cu-diamond composites with near-perfect interfaces prepared via electroplating and its thermal properties[J]. Materials Characterization, 2019, 150: 199-206. [8] CHEN M H, LI H Z, WANG C R, et al. Progress in heat conduction of diamond/Cu composites with high thermal conductivity[J]. Rare Metal Materials and Engineering. 2020, 49(12): 4146-4158. [9] DENKENA B, KR?DEL A, LANG R. Fabrication and use of Cu-Cr-diamond composites for the application in deep feed grinding of tungsten carbide[J]. Diamond and Related Materials, 2021, 120: 108668. [10] GAN J, GAO H, WEN S F, et al. Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2020, 87: 105144. [11] WANG S Y, XIAO B, XIAO H Z, et al. Interface microstructure and bonding performance of brazed W-coated diamonds using Ni-Cr alloy[J]. Ceramics International, 2022, 48(7): 9864-9872. [12] EDTMAIER C, SEGL J, KOOS R, et al. Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: Effect of diamond surface termination and processing conditions[J]. Diamond and Related Materials, 2020, 106: 107842. [13] XIE Z N, GUO H, ZHANG Z, et al. Thermal expansion behaviour and dimensional stability of diamond/Cu composites with different diamond content[J]. Journal of Alloys and Compounds, 2019, 797: 122-130. [14] CUI W, XU H, CHEN J H, et al. Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(6): 716-722. [15] ZHANG C, CAI Z Y, TANG Y G, et al. Microstructure and thermal behavior of diamond/Cu composites: Effects of surface modification[J]. Diamond and Related Materials, 2018, 86: 98-108. [16] 孙建新, 张成林, 罗贤. 高导热金刚石/Cu复合材料的研究进展[J]. 有色金属材料与工程, 2024, 45(4): 1-11. [17] CAO H J, TAN Z Q, LU MH, et al. Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: an approach beyond surface metallization and matrix alloying[J]. Carbon, 2019, 150: 60-68. [18] 王伟豪, 王秒, 刘大钊, 等. 石墨烯-金刚石/铜复合材料的电化学腐蚀性能研究[J]. 表面技术, 2023, 52(7): 177-185. [19] 李灏博, 赵志伟, 王顺, 等. TiO2对金刚石/铜复合材料导热性能的影响[J]. 材料热处理学报, 2023, 44(4): 32-39. [20] WU X Z, WAN D Q, ZHANG W, et al. Constructing efficient heat transfer channels at the interface of diamond/Cu composites[J]. Composite Interfaces, 2021, 28(6): 625-635. [21] 赵龙, 宋平新, 张迎九, 等. 高温高压法制备金刚石/铜复合材料的研究[J]. 金刚石与磨料磨具工程, 2018, 38(2): 15-19. [22] 张文凯, 彭放, 郭振堂,等. 高压烧结镀Cr、Ti膜金刚石/铜复合材料热导率研究[J]. 高压物理学报, 2012, 26(3): 306-312. [23] 谢文静, 刘全有, 沈卓身, 等. 金刚石/硅复合材料的制备和导热性能[J]. 北京科技大学学报, 2010, 32(11): 1471-1475. [24] 刘正帅. 高温高压法合成金刚石/碳化硅复合材料及优化导热性能研究[D]. 吉林: 吉林大学, 2023 [25] 马安, 何新波, 杨振亮, 等. 真空气相反应烧结法制备金刚石-碳化硅复合材料[J]. 稀有金属材料与工程, 2013, 42(S1): 248-251. [26] JIA J H, BAI S X, XIONG D G, et al. Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration[J]. Ceramics International, 2019, 45(8): 10810-10818. [27] LI J W, ZHANG H L, WANG L H, et al. Optimized thermal properties in diamond particles reinforced copper-titanium matrix composites produced by gas pressure infiltration[J]. Composites Part A: Applied Science and Manufacturing, 2016, 91: 189-194. [28] 戴书刚, 李金旺, 董传俊. 金刚石/铜高导热复合材料制备工艺的研究进展[J]. 精细化工, 2019, 36(10): 1995-2008. [29] 朱聪旭, 申铮源, 武玺旺, 等. 铬包覆的金刚石颗粒增强铜基复合材料的热物理性能研究[J]. 化工新型材料, 2018, 46(4): 66-69. [30] 高阳, 肖海波, 张伟, 等. 金刚石表面镀Ti对Cu40Ni30Fe20Sn5Ti5/金刚石复合材料界面反应行为的影响[J]. 中南大学学报(自然科学版), 2023, 54(9): 3432-3443. [31] YANG L, SUN L, BAI W W, et al. Thermal conductivity of Cu-Ti/diamond composites via spark plasma sintering[J]. Diamond and Related Materials, 2019, 94: 37-42. [32] 陈冰威, 韩金江, 余威, 等. 金刚石表面改性及基体合金化对金刚石/铜复合材料导热性能的影响[J]. 粉末冶金技术, 2022, 40(3): 258-266. [33] WANG Y L, DUAN K Y, WANG K K, et al. Structure and thermal properties of layered Ti-clad diamond/Cu composites prepared by SPS and HP[J]. Rare Metal Materials and Engineering, 2018, 47(7): 2011-2016. [34] REN S B, SHEN X Y, GUO C Y, et al. Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy[J]. Composites Science and Technology, 2011, 71(13): 1550-1555. [35] MONACHON C, WEBER L, DAMES C. Thermal boundary conductance: a materials science perspective[J]. Annual Review of Materials Research, 2016, 46: 433-463. [36] LI Y Q, ZHOU H Y, WU C J, et al. The interface and fabrication process of diamond/Cu composites with nanocoated diamond for heat sink applications[J]. Metals, 2021, 11(2): 196. [37] WANG L H, LI J W, CATALANO M, et al. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer[J]. Composites Part A: Applied Science and Manufacturing, 2018, 113: 76-82. [38] 张利琪. TiC镀层改性金刚石及其铜基复合材料的热性能研究[D]. 西安: 长安大学, 2022. [39] LEI L, BOLZONI L, YANG F. High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated-diamond composite[J]. Carbon, 2020, 168: 553-563. [40] LEI L, SU Y, BOLZONI L, et al. Evaluation on the interface characteristics, thermal conductivity, and annealing effect of a hot-forged Cu-Ti/diamond composite[J]. Journal of Materials Science & Technology, 2020, 49: 7-14. [41] WANG J D, LI L Q, TAO W. Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition[J]. Optics & Laser Technology, 2016, 82: 170-182. [42] ZHANG H D, ZHANG J J, LIU Y, et al. Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface[J]. Scripta Materialia, 2018, 152: 84-88. [43] XIE Z N, GUO H, XIAO W, et al. Interfacial structures and their effect on thermal conductivity and mechanical properties of diamond/Cu-B composites[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(1): 246-254. [44] LüTTGE A. Crystal dissolution kinetics and Gibbs free energy[J]. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150(2/3): 248-259. [45] DE LA PIERRE M, BRUNO M, MANFREDOTTI C, et al. The (100), (111) and (110) surfaces of diamond: an ab initio B3LYP study[J]. Molecular Physics, 2014, 112(7): 1030-1039. [46] CHE Q L, ZHANG J J, CHEN X K, et al. Spark plasma sintering of titanium-coated diamond and copper-titanium powder to enhance thermal conductivity of diamond/copper composites[J]. Materials Science in Semiconductor Processing, 2015, 33: 67-75. [47] 季兴桥, 来晋明. 超高导热金刚石铜复合材料在GaN器件中的应用[J]. 半导体技术, 2017, 42(4): 310-314. [48] 张梁娟, 钱吉裕, 牛通, 等. 金刚石/铜在微波功率组件热设计中的应用研究[J]. 电子机械工程, 2017, 33(6): 55-58. [49] 郭宏. 空间低温用金刚石/铜复合材料的研究[D]. 北京:北京科技大学, 2015.
|