[1] 沈天伦, 司金海, 陈涛, 等. 飞秒激光辐照结合湿法腐蚀在晶体材料微结构制备中的应用[J]. 激光与光电子学进展, 2020, 57(11): 111419. [2] 邓思宇. 高压GaN HEMT新结构与机理研究[D]. 成都: 电子科技大学, 2023. [3] 徐一帆, 邵景珍, 林颖, 等. 硬脆材料的激光表面抛光研究进展[J]. 激光与光电子学进展, 2022, 59(13): 1300003. [4] 张钰. 超短脉冲激光焊接硬脆材料工艺与机理研究[D]. 镇江: 江苏大学, 2020. [5] 张坤领. 硬脆材料加工技术发展现状[J]. 组合机床与自动化加工技术, 2008(5): 1-6. [6] 岳端木. 基于飞秒激光的喷油器微孔加工技术研究[D]. 天津: 天津工业大学, 2021. [7] RETHFELD B, IVANOV D S, GARCIA M E, et al. Modelling ultrafast laser ablation[J]. Journal of Physics D: Applied Physics, 2017, 50(19): 193001.[LinkOut] [8] 邱建荣. 飞秒激光加工技术: 基础与应用[M]. 北京: 科学出版社, 2018.[LinkOut] [9] 何飞,程亚. 飞秒激光微加工:激光精密加工领域的新前沿[J]. 中国激光杂志,2007,34(5): 595-622. [10] RETHFELD B, KAISER A, VICANEK M, et al. Femtosecond laser-induced heating of electron gas in aluminium[J]. Applied Physics A, 1999, 69(1): S109-S112. [11] ANISIMOV S I, KAPELIOVICH B L, PERELMAN T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 1974, 66: 776-781. [12] QIU T Q, TIEN C L. Short-pulse laser heating on metals[J]. International Journal of Heat and Mass Transfer, 1992, 35(3): 719-726. [13] JIANG L, TSAI H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 2005, 127(10): 1167-1173. [14] KAISER A, RETHFELD B, VICANEK M, et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses[J]. Physical Review B, 2000, 61(17): 11437-11450. [15] 周思雨. 飞秒激光加工石英玻璃微结构实验与仿真研究[D]. 大连: 大连理工大学, 2015. [16] MAINFRAY G, MANUS G. Multiphoton ionization of atoms[J]. Reports on progress in physics, 1991, 54(10): 1333-1372. [17] LIU W, LUO Q, CHIN S L. Competition between multiphoton/tunnel ionization and filamentation induced by powerful femtosecond laser pulses in air[J]. Chinese Optics Letters, 2003, 1(1): 56-59. [18] LINDL J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. [19] POSTHUMUS J H. The dynamics of small molecules in intense laser fields[J]. Reports on Progress in Physics, 2004, 67(5): 623-665. [20] JOGLEKAR A P, LIU H H, MEYH?FER E, et al. Optics at critical intensity: applications to nanomorphing[J]. Proc Natl Acad Sci USA, 2004, 101(16): 5856-5861. [21] COUAIRON A, MYSYROWICZ A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2/3/4): 47-189. [22] DRAKE G W F. Springer handbook of atomic, molecular, and optical physics[M]. New York: Springer, 2006. [23] SEMALTIANOS N G. Nanoparticles by laser ablation[J]. Critical Reviews in Solid State and Materials Sciences, 2010, 35(2): 105-124. [24] SELM R, WINTERHALDER M, ZUMBUSCH A, et al. Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er: fiber laser system[J]. Optics Letters, 2010, 35(19): 3282-3284. [25] TIWARI D, BELLOUARD Y, DIETZEL A, et al. Dynamical observation of femtosecond-laser-induced bubbles in water using a single laser source for probing and sensing[J]. Applied Physics Express, 2010, 3(12): 127101. [26] BRELET Y, JARNAC A, CARBONNEL J, et al. Underwater acoustic signals induced by intense ultrashort laser pulse[J]. The Journal of the Acoustical Society of America, 2015, 137(4): EL288-EL292. [27] HELLE M H, JONES T G, PE?ANO J R, et al. Formation and propagation of meter-scale laser filaments in water[J]. Applied Physics Letters, 2013, 103(12): 121101. [28] MEN Z, FANG W, LI D, et al. Raman spectra from symmetric hydrogen bonds in water by high-intensity laser-induced breakdown[J]. Scientific Reports, 2014, 4(1): 4606. [29] KUMAR V R, KIRAN P P. Onset of ice VII phase of liquid water: role of filamentation in stimulated Raman scattering[J]. Optics Letters, 2015, 40(12): 2802-2805. [30] TANGEYSH B, MOORE TIBBETTS K, ODHNER J H, et al. Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4] –[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18719-18727. [31] MEADER V K, JOHN M G, RODRIGUES C J, et al. Roles of free electrons and H2O2 in the optical breakdown-induced photochemical reduction of aqueous [AuCl4[J]. J Phys Chem A, 2017, 121(36): 6742-6754. [32] 栾美玲, 郑家鑫, 孙相超, 等. 液体辅助激光加工硬脆材料及其应用[J]. 光电工程, 2023, 50(3): 60-78. [33] DAMINELLI G, KRüGER J, KAUTEK W. Femtosecond laser interaction with silicon under water confinement[J]. Thin Solid Films, 2004, 467(1/2): 334-341. [34] LIU H W, CHEN F, WANG X H, et al. Influence of liquid environments on femtosecond laser ablation of silicon[J]. Thin Solid Films, 2010, 518(18): 5188-5194. [35] LI G Q, ZHANG Z, WU P C, et al. One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J]. RSC Advances, 2016, 6(44): 37463-37471. [36] WANG C J, WANG Z W, TIAN W T, et al. Influence of focus positions on underwater femtosecond laser dicing of silicon wafer[J]. Journal of Manufacturing Processes, 2023, 92: 189-195. [37] WANG Q W, YAO P, LI Y M, et al. Inverted pyramid structure on monocrystalline silicon processed by wet etching after femtosecond laser machining in air and deionized water[J]. Optics & Laser Technology, 2023, 157: 108647. [38] SHEN M Y, CAREY J E, CROUCH C H, et al. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water[J]. Nano Letters, 2008, 8(7): 2087-2091. [39] INTARTAGLIA R, BAGGA K, BRANDI F, et al. Optical characterization of silicon nanoparticle obtained via femtosecond laser ablation in deionized water[C]// Synthesis and Photonics of Nanoscale Materials Ⅷ, San Francisco, California, USA, 2011. [40] DERRIEN T J Y, KOTER R, KRüGER J, et al. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water[J]. Journal of Applied Physics, 2014, 116(7): 074902. [41] ROMASHEVSKIY S A, ASHITKOV S I, DMITRIEV A S. Formation of ordered nano- and mesostructures in silicon irradiated with a single femtosecond laser pulse in different environments[J]. Technical Physics Letters, 2016, 42(8): 810-813. [42] RODIO M, BRESCIA R, DIASPRO A, et al. Direct surface modification of ligand-free silicon quantum dots prepared by femtosecond laser ablation in deionized water[J]. Journal of Colloid and Interface Science, 2016, 465: 242-248. [43] ROMASHEVSKIY S A. Singularities of silicon surface nanostructuring due to ultrafast heating in water by a femtosecond laser pulse[J]. Technical Physics Letters, 2018, 44(7): 630-633. [44] GOODARZI R, HAJIESMAEILBAIGI F. Circular ripple formation on the silicon wafer surface after interaction with linearly polarized femtosecond laser pulses in air and water environments[J]. Optical and Quantum Electronics, 2018, 50(7): 299. [45] ZHANG D S, SUGIOKA K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electronic Advances, 2019, 2(3): 19000201-19000218. [46] ZHANG D S, RANJAN B, TANAKA T, et al. Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring[J]. International Journal of Extreme Manufacturing, 2020, 2(1): 015001. [47] LUONG K P, TANABE-YAMAGISHI R, YAMADA N, et al. Laser-assisted wet etching of silicon back surfaces using 1552 nm femtosecond laser[J]. International Journal of Electrical Machining, 2020, 25: 7. [48] CAO J, SHEN X Y, YU Z H, et al. Engineering the crystalline silicon surface by femtosecond laser processing in liquid: Hierarchical micro/nanostructure and amorphization[J]. Materials Chemistry and Physics, 2020, 248: 122909. [49] ZHANG D S, WU L-C, UEKI M, et al. Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application[J]. International Journal of Extreme Manufacturing, 2020, 2(4): 045001. [50] BORODAENKO Y, GURBATOV S, TUTOV M, et al. Direct femtosecond laser fabrication of chemically functionalized ultra-black textures on silicon for sensing applications[J]. Nanomaterials, 2021, 11(2): 401. [51] TIAN W T, WANG Z W, WANG C J, et al. Effects of bubble behaviors in femtosecond laser machining of silicon wafer in liquids[J]. Journal of Manufacturing Processes, 2022, 83: 502-511. [52] TIAN W T, WANG Z W, WANG C J, et al. Effects and mechanism of focusing condition on machining quality and bubble behaviors in femtosecond laser micro-grooving of silicon wafer in liquid[J]. Optics & Laser Technology, 2024, 169: 110101. [53] WANG C J, WANG Z W, WANG X Q, et al. Influence of beam polarization on underwater femtosecond laser machining of silicon wafer[J]. Journal of Manufacturing Processes, 2024, 128: 41-49.[LinkOut] [54] CHEN P, TU S Y, PAN R, et al. Experimental study on femtosecond laser-induced microjet-assisted trepan drilling of silicon wafer[C]//2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 2024: 1-5. [55] 郝跃. 宽禁带与超宽禁带半导体器件新进展[J]. 科技导报, 2019, 37(3): 58-61. [56] HUANG Y H, ZHOU Y Q, LI J M, et al. Femtosecond laser surface modification of 4H-SiC improves machinability[J]. Applied Surface Science, 2023, 615: 156436. [57] ZHENG Q Z, CUI J L, FAN Z J, et al. An experimental investigation of scan trajectory into the underwater femtosecond laser polishing SiC ceramic[J]. Ferroelectrics, 2020, 563(1): 77-86. [58] WANG W J, SONG H W, LIAO K, et al. Water-assisted femtosecond laser drilling of 4H-SiC to eliminate cracks and surface material shedding[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(1): 553-562. [59] REN N F, GAO F Q, WANG H X, et al. Water-induced effect on femtosecond laser layered ring trepanning in silicon carbide ceramic sheets using low-to-high pulse repetition rate[J]. Optics Communications, 2021, 496: 127040. [60] WU C, FANG X D, KANG Q, et al. Crystal cleavage, periodic nanostructure and surface modification of SiC ablated by femtosecond laser in different media[J]. Surface and Coatings Technology, 2021, 424: 127652. [61] WEI J Y, YUAN S M, ZHANG J Q, et al. Femtosecond laser ablation behavior of SiC/SiC composites in air and water environment[J]. Corrosion Science, 2022, 208: 110671. [62] WEI J Y, YUAN S M, ZHANG J Q, et al. Removal mechanism of SiC/SiC composites by underwater femtosecond laser ablation[J]. Journal of the European Ceramic Society, 2022, 42(13): 5380-5390. [63] GUO X J, SONG H Y, LI Y C, et al. Fabrication of 4H–SiC nanoparticles using femtosecond pulsed laser ablation in deionized water[J]. Optical Materials, 2022, 132: 112817. [64] KUMAR K R, RATHOD J, BHARATHI M S S, et al. Study on the influence of material properties in femtosecond laser ablation of 6H-SiC in water and SERS-based applications[J]. Optics Express, 2024, 32(21): 37394-37417. [65] CHOO K L, OGAWA Y, KANBARGI G, et al. Micromachining of silicon by short-pulse laser ablation in air and under water[J]. Materials Science and Engineering: A, 2004, 372(1/2): 145-162. [66] LI Y, ITOH K, WATANABE W, et al. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Optics Letters, 2001, 26(23): 1912-1914. [67] CAO X W, CHEN Q D, FAN H, et al. Liquid-assisted femtosecond laser precision-machining of silica[J]. Nanomaterials, 2018, 8(5): 287. [68] SUN X Y, ZHENG J F, LIANG C, et al. Improvement of rear damage of thin fused silica by liquid-assisted femtosecond laser cutting[J]. Applied Physics A, 2019, 125(7): 461. [69] SUN X Y, YU J L, HU Y W, et al. Study on ablation threshold of fused silica by liquid-assisted femtosecond laser processing[J]. Applied Optics, 2019, 58(33): 9027-9032. [70] MA?ERNYT? L, SKRUIBIS J, VAI?AITIS V, et al. Femtosecond laser micromachining of soda-lime glass in ambient air and under various aqueous solutions[J]. Micromachines (Basel), 2019, 10(6): E354. [71] WANG B X, QI J Y, LU Y M, et al. Rapid fabrication of smooth micro-optical components on glass by etching-assisted femtosecond laser modification[J]. Materials, 2022, 15(2): 678. [72] MARKAUSKAS E, ZUBAUSKAS L, RA?IUKAITIS G, et al. Femtosecond laser cutting of 110-550 μm thickness borosilicate glass in ambient air and water[J]. Micromachines (Basel), 2023, 14(1): 176. [73] CAMPBELL S A, COOPER K, DIXON L, et al. Inhibition of pyramid formation in the etching of Si p(100) in aqueous potassium hydroxide-isopropanol[J]. Journal of Micromechanics and Microengineering, 1995, 5(3): 209-218. [74] DEMIREL A, ?ZTA? T, KUR?UNG?Z C, et al. Synthesis of blue-shifted luminescent colloidal GaN nanocrystals through femtosecond pulsed laser ablation in organic solution[J]. Journal of Nanoparticle Research, 2016, 18(5): 128. [75] REN N F, XIA K B, YANG H Y, et al. Water-assisted femtosecond laser drilling of alumina ceramics[J]. Ceramics International, 2021, 47(8): 11465-11473. [76] ZHANG K, XU Z W, DONG B, et al. Process exploration of β-Ga2O3 blind hole processing by water-assisted femtosecond laser technology[J]. Journal of Alloys and Compounds, 2023, 939: 168769. [77] SARAEVA I N, KUDRYASHOV S I, LEDNEV V N, et al. Single- and multishot femtosecond laser ablation of silicon and silver in air and liquid environments: Plume dynamics and surface modification[J]. Applied Surface Science, 2019, 476: 576-586. [78] OUYANG P X, LI P J, LEKSINA E G, et al. Effect of liquid properties on laser ablation of aluminum and titanium alloys[J]. Applied Surface Science, 2016, 360: 880-888. [79] ALI N, BASHIR S, UMM-I-KALSOOM, et al. Effect of liquid environment on the titanium surface modification by laser ablation[J]. Applied Surface Science, 2017, 405: 298-307. [80] LI G Q. Multifunctional three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation[J]. Bionic Functional Structures by Femtosecond Laser Micro/nanofabrication Technologies, 2018, 61-76. [81] SARAEVA I N, KUDRYASHOV S I, RUDENKO A A, et al. Effect of fs/ps laser pulsewidth on ablation of metals and silicon in air and liquids, and on their nanoparticle yields[J]. Applied Surface Science, 2019, 470: 1018-1034. [82] ZHANG D, RANJAN B, TANAKA T, et al. Multiscale hierarchical micro/nanostructures created by femtosecond laser ablation in liquids for polarization-dependent broadband antireflection[J]. Nanomaterials (Basel), 2020, 10(8): E1573. [83] 任乃飞,杨华宇,夏凯波. 不同水辅助方法对高温合金飞秒激光逐层逐圈切孔质量的影响[J]. 红外与激光工程, 2022, 51(12): 20220143-10. [84] ZHANG D S, LI X Z, FU Y, et al. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS[J]. Opto-Electronic Advances, 2022, 5(2): 210066. [85] YANG Y, YANG F Z, HUANG K, et al. Liquid-assisted femtosecond laser-induced LIPSS on the surface of YT15 cemented carbide and its mechanical properties[J]. Surface and Coatings Technology, 2024, 476: 130132. [86] POVARNITSYN M E, ITINA T E. Hydrodynamic modeling of femtosecond laser ablation of metals in vacuum and in liquid[J]. Applied Physics A, 2014, 117(1): 175-178. [87] KANITZ A, HOPPIUS J S, FIEBRANDT M, et al. Impact of liquid environment on femtosecond laser ablation[J]. Applied Physics A, 2017, 123(11): 674. [88] CHEN C B, ZHIGILEI L V. Atomistic modeling of pulsed laser ablation in liquid: spatially and time-resolved maps of transient nonequilibrium states and channels of nanoparticle formation[J]. Applied Physics A, 2023, 129(4): 288. [89] SHIH C Y, SHUGAEV M V, WU C, et al. Generation of subsurface voids, incubation effect, and formation of nanoparticles in short pulse laser interactions with bulk metal targets in liquid: molecular dynamics study[J]. J Phys Chem C Nanomater Interfaces, 2017, 121(30): 16549-16567. [90] INOGAMOV N A, KHOKHLOV V A, PETROV Y V, et al. Hydrodynamic and molecular-dynamics modeling of laser ablation in liquid: from surface melting till bubble formation[J]. Optical and Quantum Electronics, 2020, 52(2): 63. [91] CHEN Y S, SUN H P, LIN G, et al. Multiphysics modeling femtosecond laser ablation of Ti6Al4V with material transient properties[J]. Journal of Alloys and Compounds, 2024, 1002: 175360. [92] YAN Z X, MEI X S, WANG W J, et al. Theoretical investigation of multipulse femtosecond laser processing on silicon carbide: ablation, shielding effect, and recast formation[J]. Optics & Laser Technology, 2025, 181: 111976. [93] 林卿,任乃飞,夏凯波,等. 纳米尺度下基底弯曲曲率对飞秒激光与银纳米结构作用的影响[J]. Acta Optica Sinica, 2024, 44(16): 1614001. [94] DU G Q, YU F R, WAQAS A, et al. Ultrafast thermalization dynamics in silicon wafer excited by femtosecond laser double-pulse vortex beam[J]. Optics & Laser Technology, 2024, 174: 110619.
|