[1] 顾雨萍, 李向江, 吴秀梅. 第三代半导体材料发展前景分析[J]. 中国集成电路, 2023, 32(3): 22-25. [2] 程哲. 第三代半导体材料及器件中的热科学和工程问题[J]. 物理学报, 2021, 70(23): 336-340. [3] 刘新路. 第三代半导体封装纳米铜基固晶材料的制备及其热机电性能研究[D]. 广州: 广东工业大学, 2022. [4] JIANG H J, MOON K S, LI Y, et al. Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites[J]. Chemistry of Materials, 2006, 18(13): 2969-2973. [5] 吕明, 赵瑞欢. 不同形貌纳米颗粒银粉的引入搭配对导电银浆电性能的影响[J]. 当代化工研究, 2021(12): 34-35. [6] XIE Y D, KOCAEFE D, CHEN C Y, et al. Review of research on template methods in preparation of nanomaterials[J]. Journal of Nanomaterials, 2016, 2016: 2302595. [7] 孟宪伟, 刘世铎, 张泽磊, 等. 不同维度的银微纳米材料研究进展[J]. 贵金属, 2020, 41(1): 77-84. [8] 张大伟. 基于聚芳醚腈微球反应器的银纳米粒子合成与光学性能研究[D]. 成都: 电子科技大学, 2019. [9] 陈建波, 李启厚, 李玉虎, 等. 以丙三醇为还原剂的沉淀转化法制备超细银粉[J]. 粉末冶金材料科学与工程, 2013, 18(6): 874-881. [10] TURKEVICH J, STEVENSON P C, HILLIER J. A study of the nucleation and growth processes in the synthesis of colloidal gold[J]. Discussions of the Faraday Society, 1951, 11: 55-75. [11] SLEPI?KA P, SLEPI?KOVá KASáLKOVá N, SIEGEL J, et al. Methods of gold and silver nanoparticles preparation[J]. Materials, 2019, 13(1): 1. [12] YANG Z Q, QIAN H J, CHEN H Y, et al. One-pot hydrothermal synthesis of silver nanowires via citrate reduction[J]. Journal of Colloid and Interface Science, 2010, 352(2): 285-291. [13] SPINA R L, MEHN D, FUMAGALLI F, et al. Synthesis of citrate-stabilized silver nanoparticles modified by thermal and pH preconditioned tannic acid[J]. Nanomaterials, 2020, 10(10): 2031. [14] 常子贡, 吴若梅, 武帅, 等. 多元醇法制备纳米银线及其性能研究[J]. 绿色包装, 2019(12): 54-59. [15] WEI J Y, LI X Q, BIAN F P, et al. Synthesis of high purity silver nanowires through a silver chloride-mediated polyol method[J]. Inorganic Chemistry Communications, 2022, 146: 110164. [16] KARIMI-CHALESHTORI R, NASSAJPOUR-ESFAHANI A H, SAERI M R, et al. Silver nanowire-embedded PDMS with high electrical conductivity: nanowires synthesis, composite processing and electrical analysis[J]. Materials Today Chemistry, 2021, 21: 100496. [17] PATIL S, KATE P R, DESHPANDE J B, et al. Quantitative understanding of nucleation and growth kinetics of silver nanowires[J]. Chemical Engineering Journal, 2021, 414: 128711. [18] JANA N R, GEARHEART L, MURPHY C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J]. Chemical Communications, 2001(7): 617-618. [19] WHITEHEAD C, ?ZKAR S, FINKE R G. LaMer’s 1950 model for particle formation of instantaneous nucleation and diffusion-controlled growth: a historical look at the model’s origins, assumptions, equations, and underlying sulfur Sol formation kinetics data[J]. Chemistry of Materials, 2019, 31(18): 7116-7132. [20] SAU T K, PAL A, JANA N R, et al. Size Controlled Synthesis of Gold Nanoparticles using Photochemically Prepared Seed Particles[J]. Journal of Nanoparticle Research, 2001, 3(4): 257-261. [21] HUANG X T, XIA S K, LEE S, et al. Continuous production of monodisperse silver nanoparticles suitable for catalysis in a droplet-based microreactor system[J]. ACS Applied Nano Materials, 2023, 6(10): 8574-8583. [22] XING L X, XIAHOU Y J, ZHANG P N, et al. Size control synthesis of monodisperse, quasi-spherical silver nanoparticles to realize surface-enhanced Raman scattering uniformity and reproducibility[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17637-17646. [23] 袁国栋, 张森林, 王冬艳. 聚乙烯基吡咯烷酮在银粉合成过程中的作用机制[J]. 山东化工, 2023, 52(18): 11-15. [24] 赖耀斌, 陈冬英, 杨新华, 等. 以阿拉伯树胶为分散剂制备高分散球形超细银粉[J]. 真空科学与技术学报, 2017, 37(11): 1117-1121. [25] 李向果, 姚国佳, 马勇, 等. 表面活性剂对微米银粉的粒径与形貌的影响研究[J]. 电镀与精饰, 2022, 44(5): 50-56. [26] YANG P F, LIANG Y, ZHANG D X, et al. Rebuildable silver nanoparticles employed as seeds for synthesis of pure silver nanopillars with hexagonal cross-sections under room temperature[J]. Nanomaterials, 2023, 13(7): 1263. [27] FU L M, HSU J H, SHIH M K, et al. Process optimization of silver nanoparticle synthesis and its application in mercury detection[J]. Micromachines, 2021, 12(9): 1123. [28] ALQADI M K, ABO NOQTAH O A, ALZOUBI F Y, et al. PH effect on the aggregation of silver nanoparticles synthesized by chemical reduction[J]. Materials Science-Poland, 2014, 32(1): 107-111. [29] 黎应芬, 童子文, 陈雷, 等. 电极银浆用微纳米银粉的制备与性能研究[J]. 粉末冶金技术, 2020, 38(4): 275-282. [30] 肖勇. 复合纳米银颗粒低温烧结机理及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [31] CHEN C T, YEOM J, CHOE C, et al. Necking growth and mechanical properties of sintered Ag particles with different shapes under air and N2 atmosphere[J]. Journal of Materials Science, 2019, 54(20): 13344-13357. [32] LYU W, LIU J, LEI X, et al. Porosity dependence of thermal and electrical properties in nano-silver paste [J]. IEEE Transactions on Electron Devices, 2022, 70(2): 702-707. [33] ZHANG Z Q, FU G C, WAN B, et al. Research on sintering process and thermal conductivity of hybrid nanosilver solder paste based on molecular dynamics simulation[J]. Microelectronics Reliability, 2021, 126: 114203. [34] WANG M Y, MEI Y H, JIN J Y, et al. Pressureless sintered-silver die-attach at 180 ℃ for power electronics packaging[J]. IEEE Transactions on Power Electronics, 2021, 36(11): 12141-12145. [35] KIM Y J, PARK B H, HYUN S K, et al. The influence of porosity and pore shape on the thermal conductivity of silver sintered joint for die attach[J]. Materials Today Communications, 2021, 29: 102772. [36] ZHANG H, LIU Y, WANG L G, et al. Effects of sintering pressure on the densification and mechanical properties of nanosilver double-side sintered power module[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2018, PP(99): 1. [37] ZHANG H Q, BAI H L, JIA Q, et al. High electrical and thermal conductivity of nano-Ag paste for power electronic applications[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1543-1555. [38] LU X Z, LV Z, SUN Y Q, et al. Enhanced mechanical and thermal properties of Ag joints sintered by spark plasma sintering[J]. Journal of Electronic Materials, 2022, 51(11): 6310-6319. [39] MEI Y H, LI L, LI X, et al. Electric-current-assisted sintering of nanosilver paste for copper bonding[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(12): 9155-9166. [40] SHEN X W, XI S, XU L, et al. Pressureless sintering performance enhancement of Ag pastes by surface modification of Ag nanoparticles with tert-dodecyl mercaptan[J]. Journal of Nanoparticle Research, 2022, 24(11): 213. [41] SUN B R, ZHANG M H, LI J J, et al. Will better sintering quality of Ag nanoparticles lead to more reliable Ag bonding interfaces?[J]. Journal of Electronic Materials, 2023, 52(11): 7475-7483. [42] LI X, LIN L T, DU C J, et al. Effect of oxygen content on bonding performance of sintered silver joint on bare copper substrate[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(3): 391-398. [43] 王凯枫. Cu@Ag核壳纳米浆料烧结及其传热规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. [44] TSAI C H, HUANG W C, CHEW L M, et al. Low-pressure micro-silver sintering with the addition of indium for high-temperature power chips attachment[J]. Journal of Materials Research and Technology, 2021, 15: 4541-4553. [45] YANG H, WU J H. Improvement of sintering performance of nanosilver paste by tin doping[J]. Journal of Nanomaterials, 2020, 2020: 3925276. [46] WANG J H,, YODO S, TATSUMI H, et al. Thermal conductivity and reliability reinforcement for sintered microscale Ag particle with AlN nanoparticles additive [J]. Materials Characterization, 2023, 203: 113150. [47] HU B, YANG F, PENG Y, et al. Effect of SiC reinforcement on the reliability of Ag nanoparticle paste for high-temperature applications[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(3): 2413-2418. [48] YU F W, LIU H, HANG C J, et al. Rapid formation of full intermetallic bondlines for die attachment in high-temperature power devices based on micro-sized Sn-coated Ag particles[J]. JOM, 2019, 71(9): 3049-3056. [49] PAJOR-?WIERZY A, SZENDERA F, PAW?OWSKI R, et al. Nanocomposite inks based on nickel-silver core–shell and silver nanoparticles for fabrication conductive coatings at low-temperature sintering[J]. Colloids and Interfaces, 2021, 5(1): 15. 唐思危(1984—),男,湖南张家界人,博士,副教授,主要研究方向为电子封装用焊料合金、多形貌微纳银粉和磁性纳米材料。 |