[1] 郑浩栋, 李洁, 张华鹏, 等. 可用于室温下的丙酮气体传感器制备及性能研究[J]. 纺织导报, 2024(3): 72-74, 76. [2] 郭路路, 赵姝姝, 杨桂茂, 等. 基于生物质衍生α-Fe2O3的丙酮气体传感器实验研究[J]. 传感器与微系统, 2024, 43(1): 29-32. [3] 周雨萌, 尤睿, 魏向阳, 等. 一种用于丙酮气体检测的智能MEMS仿生嗅觉系统[J]. 北京信息科技大学学报(自然科学版), 2023, 38(3): 52-58. [4] 严文坤, 杨晨光, 刘茁, 等. Cu-MOF衍生Cu/CuO复合材料用于丙酮气体传感及性能研究[J]. 化工新型材料, 2024, 52(S1): 337-341. [5] 吴忠元, 张骋, 郑晓虹, 等. 氧化钨基材料气敏性能及其改性的研究进展[J]. 微纳电子技术, 2023, 60(12): 1892-1906. [6] 王建彬, 王成, 孙艳, 等. WO3丙酮传感器及其多传感器融合技术的研究[J]. 有色金属材料与工程, 2023, 44(6): 71-77. [7] 宋怡然, 梁峻阁, 顾晓峰. 用于酵母菌检测的微波超材料传感器[J]. 电子与封装, 2024, 24(8): 080501. [8] 江世鹏, 张继豪, 李明钰, 等. 基于一维二维复合气敏材料的阵列式微波气体传感研究[J]. 仪表技术与传感器, 2023(8): 20-25, 30. [9] 卫涛, 李伟, 解小玲, 等. 微波法制备金属氧化物纳米材料气体传感器研究进展[J]. 化工新型材料, 2024, 52(4): 14-18, 23. [10] WU J-K, WU E-K, KIM N Y, et al. Operation temperature effects on a microwave gas sensor with and without sensitive material[J]. ACS Sensors, 2024, 9(9): 4731-4739. [11] GAO K, WU J K, WANG X, et al. Specific detection of organic and inorganic solution based on microwave resonator array[J]. IEEE Sensors Journal, 2022, 22(11): 10532-10540. [12] 黄旭, 张炜栋. 基于POSS嵌段共聚物/季铵盐静电纺丝膜的制备及其抗菌疏水性能[J]. 印染, 2024, 50(12): 12-15. [13] 余彦婷, 杨雅晴, 王欣欣, 等. 静电纺复合隔热纳米纤维膜的制备及性能[J]. 上海纺织科技, 2024, 52(12): 82-86, 96. [14] NAMOOS B M, RAHMAN MOHAMED A, AHMED ALI K. Improved photocatalytic activity for phenol degradation using a p-n junction photocatalyst composite in the presence of visible light: [GeO2 + B2O3] particles-doped ZnO oxygen vacancy[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2025, 462: 116209. [15] LI M K, POLYAKOV A Y, LI Q, et al. Deep traps and persistent photocapacitance in p-SnO2/i-ZrxSn1-x O2/n-SnO2 p-i-n diodes[J]. Physica B: Condensed Matter, 2025, 699: 416796. [16] KOU X Y, WANG C, DING M D, et al. Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties[J]. Sensors and Actuators B: Chemical, 2016, 236: 425-432. [17] PARK S, KIM S, KHEEL H, et al. Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor[J]. Sensors and Actuators B: Chemical, 2016, 222: 1193-1200. [18] KIM H J, LEE J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview[J]. Sensors and Actuators B: Chemical, 2014, 192: 607-627. [19] NARESH B, SREEKANTH T V M, SUMA C N, et al. Hydrothermally synthesized NiO-SnO2 nanocomposite as an efficient electrocatalyst for oxygen evolution reaction (OER) and urea oxidation reaction (UOR)[J]. Journal of Alloys and Compounds, 2025, 1010: 177865. [20] ZHU H K, GAO Q H, ZOU Y M, et al. Achieving strength ductility synergy of multiple hetero-structured Fe-24Mn-10Al-1C duplex lightweight steel[J]. Materials Science and Engineering: A, 2025, 922: 147651. [21] KANG S, MIRZAEI A, SHIN K Y, et al. Highly selective NO2 gas sensing with SnO2-Ti3C2Tx nanocomposites synthesized via the microwave process[J]. Sensors and Actuators B: Chemical, 2023, 375: 132882. [22] CHEN W T, STEWART K M E, MANSOUR R R, et al. Polymeric sensing material-based selectivity-enhanced RF resonant cavity sensor for volatile organic compound (VOC) detection[C].2015 IEEE MTT-S International Microwave Symposium, Phoenix, 2015: 1-3. [23] ZHAO L P, JIN R R, WANG C, et al. Flower-like ZnO-Co3O4 heterojunction composites for enhanced acetone sensing[J]. Sensors and Actuators B: Chemical, 2023, 390: 133964.
|