[1] UPADHYAY K T, CHATTOPADHYAY M K. Sensor applications based on AlGaN/GaN heterostructures[J]. Materials Science and Engineering: B, 2021, 263: 114849. [2] KUMAR A, PALIWAL S, KALRA D, et al. Development of AlGaN/GaN MOSHEMT biosensors: state-of-the-art review and future directions[J]. Materials Science in Semiconductor Processing, 2024, 174: 108225. [3] MURAD H, HASHIM W, NAHHAS A M. Review of recent advances of GaN nanowires based sensors[J]. American Journal of Nanomaterials, 2023, 11(1): 61-71. [4] 刘义鹤, 江洪. 氮化镓材料在传感器中的应用[J]. 新材料产业, 2017(5): 2-3. [5] EICKHOFF M, SCHALWIG J, STEINHOFF G, et al. Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures–part B: sensor applications[J]. Physica Status Solidi (c), 2003(6): 1908-1918. [6] KANG B S, KIM S, REN F, et al. Pressure-induced changes in the conductivity of AlGaN∕GaN high-electron mobility-transistor membranes[J]. Applied Physics Letters, 2004, 85(14): 2962-2964. [7] TAN X, LV Y J, ZHOU X Y, et al. High performance AlGaN/GaN pressure sensor with a Wheatstone bridge circuit[J]. Microelectronic Engineering, 2020, 219: 111143. [8] SUN J W, HU D, LIU Z W, et al. Low power AlGaN/GaN MEMS pressure sensor for high vacuum application[J]. Sensors and Actuators A: Physical, 2020, 314: 112217. [9] ZHOU Y S, HINCHET R, YANG Y, et al. Nano-newton transverse force sensor using a vertical GaN nanowire based on the piezotronic effect[J]. Advanced Materials, 2013, 25(6): 883-888. [10] WASEEM A, JOHAR M A, HASSAN M A, et al. Flexible self-powered piezoelectric pressure sensor based on GaN/p-GaN coaxial nanowires[J]. Journal of Alloys and Compounds, 2021, 872: 159661. [11] WASEEM A, ABDULLAH A, BAGAL I V, et al. Self-powered and flexible piezo-sensors based on conductivity-controlled GaN nanowire-arrays for mimicking rapid- and slow-adapting mechanoreceptors[J]. NPJ Flexible Electronics, 2022, 6: 58. [12] LIU S C, ZHU P Y, XIE F M, et al. Gecko-inspired self-adhesive packaging for strain-free temperature sensing based on optical fibre Bragg gratings[J]. Scientific Reports, 2023, 13(1): 4148. [13] ZHAN J H, ZHU L, HE Z L, et al. Impact force sensors based on GaN optical devices with micropatterned PDMS sponges[J]. IEEE Sensors Journal, 2023, 23(17): 19226-19231. [14] GUI S Z, YU B L, LUO Y M, et al. Rapid-response, low-detection-limit, positive-negative air pressure sensing: GaN chips integrated with hydrophobic PDMS films[J]. Microsystems & Nanoengineering, 2024, 10: 162. [15] RANJAN A, AGRAWAL M, RADHAKRISHNAN K, et al. Pt/AlGaN/GaN HEMT based ammonia gas sensors[C]// 2019 IEEE 9th International Nanoelectronics Conferences (INEC), Kuching, Malaysia, 2019: 1-5. [16] SCHALWIG J, MüLLER G, AMBACHER O, et al. Group-III-nitride based gas sensing devices[J]. Physica Status Solidi a-Applied Research, 2001, 185(1): 39-45. [17] SOKOLOVSKIJ R, ZHANG J, ZHENG H Z, et al. The impact of gate recess on the H? detection properties of Pt-AlGaN/GaN HEMT sensors[J]. IEEE Sensors Journal, 2020, 20(16): 8947-8955. [18] SUN J W, SOKOLOVSKIJ R, IERVOLINO E, et al. Suspended AlGaN/GaN HEMT NO2 gas sensor integrated with micro-heater[J]. Journal of Microelectromechanical Systems, 2019, 28(6): 997-1004. [19] MARKIEWICZ N, CASALS O, FATAHILAH M F, et al. Ultra low power mass-producible gas sensor based on efficient self-heated GaN nanorods[C]// 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 2019: 1321-1324. [20] RANJAN A, LINGAPARTHI R, DHARMARASU N, et al. Investigation of thin-barrier AlGaN/GaN HEMT heterostructures for enhanced gas-sensing performance[J]. IEEE Sensors Journal, 2022, 22(19): 18306-18312. [21] ZHANG J C, HOU X F, LIU M, et al. Hybrid small-signal modeling of GaN HEMTs based on improved genetic algorithm[J]. Microelectronics Journal, 2022, 127: 105513. [22] AHN J, KIM D, PARK K H, et al. Pt-decorated graphene gate AlGaN/GaN MIS-HEMT for ultrahigh sensitive hydrogen gas detection[J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1255-1261. [23] KHAN M A H, RAO M V. Gallium nitride (GaN) nanostructures and their gas sensing properties: a review[J]. Sensors, 2020, 20(14): 3889. [24] REDDEPPA M, PHUNG NGUYEN T K, PARK B G, et al. Low operating temperature NO gas sensors based hydrogen peroxide treated GaN nanorods[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116: 113725. [25] CHEN Y, HAN D, LI D H, et al. High-performance nitrogen dioxide gas sensor for ppb-level detection based on GaN nanoshuttles[J]. Microchemical Journal, 2023, 185: 108183. [26] BERGVELD P. Development of an ion-sensitive solid-state device for neurophysiological measurements[J]. IEEE Transactions on Bio-Medical Engineering, 1970, 17(1): 70-71. [27] BERGVELD P. Thirty years of ISFETOLOGY[J]. Sensors and Actuators B: Chemical, 2003, 88(1): 1-20. [28] BRATOV A, ABRAMOVA N, DOM??NGUEZ C. Investigation of chloride sensitive ISFETs with different membrane compositions suitable for medical applications[J]. Analytica Chimica Acta, 2004, 514(1): 99-106. [29] HUMENYUK I, TORBIéRO B, ASSIé-SOULEILLE S, et al. Development of pNH4-isfets microsensors for water analysis[J]. Microelectronics Journal, 2006, 37(6): 475-479. [30] KLOOCK J P, MORENO L, BRATOV A, et al. PLD-prepared cadmium sensors based on chalcogenide glasses: ISFET, LAPS and μISE semiconductor structures[J]. Sensors and Actuators B: Chemical, 2006, 118(1/2): 149-155. [31] VAN DER WAL P D, VAN DEN BERG A, DE ROOIJ N F. Universal approach for the fabrication of Ca2+, K+ and NO3? sensitive membrane ISFETs[J]. Sensors and Actuators B: Chemical, 1994, 18(1/2/3): 200-207. [32] 彭韬玮, 王霄, 敖金平. GaN基电力电子器件关键技术的进展[J]. 电源学报, 2019, 17(3): 4-15. [33] 陈国强. 基于氮化镓的次氯酸根离子传感器研究[D]. 西安: 西安电子科技大学, 2021. [34] KHAN M A, BHATTARAI A, KUZNIA J N, et al. High electron mobility transistor based on a GaN‐AlxGa1?xN heterojunction[J]. Applied Physics Letters, 1993, 63(9): 1214-1215. [35] GU L, YANG S, MIAO B, et al. Electrical detection of trace zinc ions with an extended gate-AlGaN/GaN high electron mobility sensor[J]. Analyst, 2019, 144(2): 663-668. [36] NIGAM A, BHAT T N, BHATI V S, et al. MPA-GSH functionalized AlGaN/GaN high-electron mobility transistor-based sensor for cadmium ion detection[J]. IEEE Sensors Journal, 2019, 19(8): 2863-2870. [37] NIGAM A, BHATI V S, BHAT T N, et al. Sensitive and selective detection of Pb2+ ions using 2, 5-dimercapto-1, 3, 4-thiadiazole functionalized AlGaN/GaN high electron mobility transistor[J]. IEEE Electron Device Letters, 2019, 40(12): 1976-1979. [38] MISHRA S, KACHHAWA P, THAKUR R R, et al. Detection of heavy metal ions using meander gated GaN HEMT sensor[J]. Sensors and Actuators A: Physical, 2021, 332: 113119. [39] JIANG X C, XIE F, GU Y, et al. L-cysteine functionalized Al0.18Ga0.82N/GaN high electron mobility transistor sensor for copper ion detection[J]. IEEE Transactions on Electron Devices, 2022, 69(6): 3367-3372. [40] HUA M, ZHANG S J, PAN B C, et al. Heavy metal removal from water/wastewater by nanosized metal oxides: a review[J]. Journal of Hazardous Materials, 2012, 211: 317-331. [41] SHARMA N, NIGAM A, BIN DOLMANAN S, et al. 1T and 2H heterophase MoS2 for enhanced sensitivity of GaN transistor-based mercury ions sensor[J]. Nanotechnology, 2022, 33(26): 1-8. [42] 贾秀玲. 用于饮用水中有害阴离子检测的GaN基HEMT传感器的研究[D]. 南京: 南京大学, 2016. [43] STEINHOFF G, HERMANN M, SCHAFF W J, et al. pH response of GaN surfaces and its application for pH-sensitive field-effect transistors[J]. Applied Physics Letters, 2003, 83(1): 177-179. [44] XUE D Y, ZHANG H Q, UL AHMAD A, et al. Enhancing the sensitivity of the reference electrode free AlGaN/GaN HEMT based pH sensors by controlling the threshold voltage[J]. Sensors and Actuators B: Chemical, 2020, 306: 127609. [45] FAUZI N, FIRDAUS A, ZHAO H C, et al. Exceptional reliability and stability AuNis–AlGaN/GaN HEMT sensor for pH detection[J]. Surfaces and Interfaces, 2025, 58: 105806. [46] PEARTON S J, REN F, WANG Y L, et al. Recent advances in wide bandgap semiconductor biological and gas sensors[J]. Progress in Materials Science, 2010, 55(1): 1-59. [47] CHU B H, KANG B S, HUNG S C, et al. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate[J]. Journal of Diabetes Science and Technology, 2010, 4(1): 171-179. [48] CHEN Y W, KUO W C, TAI T Y, et al. Highly sensitive and rapid microRNA detection for cardiovascular diseases with electrical double layer (EDL) gated AlGaN/GaN high electron mobility transistors[J]. Sensors and Actuators B: Chemical, 2018, 262: 365-370. [49] LIU J, ZHANG H Q, XUE D Y, et al. An effective hydroxylation route for a highly sensitive glucose sensor using APTES/GOx functionalized AlGaN/GaN high electron mobility transistor[J]. RSC Advances, 2020, 10(19): 11393-11399. [50] PAL P, PRATAP Y, KABRA S. T-ZnO/AlGaN/GaN HEMT uric acid sensor-sensitivity analysis and effect of surface wettability for improved performance[J]. IEEE Sensors Journal, 2022, 22(12): 11819-11826. [51] MISHRA S, KACHHAWA P, MONDAL P, et al. AlGaN/GaN HEMT based biosensor for detection of the HER2 antigen spiked in human serum[J]. IEEE Transactions on Electron Devices, 2022, 69(8): 4527-4533.
|