[1] ARNAUD L, KARAM C, BRESSON N, et al. Three-dimensional hybrid bonding integration challenges and solutions toward multi-wafer stacking[J]. MRS Communications, 2020, 10(4): 549-557. [2] WU S Y, CHANG C H, CHIANG M C, et al. A 3nm CMOS FinFlexTM platform technology with enhanced power efficiency and performance for mobile SoC and high performance computing applications[C]// 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA. New York: IEEE, 2022: 639-642. [3] 牛帆帆, 杨舒涵, 康秋实, 等. 面向三维集成的等离子体活化键合研究进展[J]. 电子与封装, 2023, 23(3): 030105. [4] 张明辉, 高丽茵, 刘志权, 等. 先进封装铜-铜直接键合技术的研究进展[J]. 电子与封装, 2023, 23(3): 030106. [5] 陈桂,邵云皓,屈新萍. 三维集成铜-铜低温键合技术的研究进展[J]. 电子与封装,2025, 25(5): 050106. [6] PANCHENKO I, WENZEL L, MUELLER M, et al. Microstructure development of Cu/SiO? hybrid bond interconnects after reliability tests[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(3): 410-421. [7] ONG J J, TRAN D P, LAN M C, et al. Enhancement of fatigue resistance by recrystallization and grain growth to eliminate bonding interfaces in Cu–Cu joints[J]. Scientific Reports, 2022, 12(1): 13116. [8] SHIE K C, HSU P N, Li Y J, et al. Failure mechanisms of Cu-Cu bumps under thermal cycling[J]. Materials, 2021, 14(19): 5522. [9] MIRKARIMI L, UZOH C, SUWITO D, et al. The influence of Cu microstructure on thermal budget in hybrid bonding[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 162-167. [10] 章海明, 徐帅, 李倩, 等. 晶体塑性理论及模拟研究进展[J]. 塑性工程学报, 2020, 27(5): 12-32. [11] HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401-413. [12] ASARO R J, RICE J R. Strain localization in ductile single crystals[J]. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 309-338. [13] LEDBETTER H M, NAIMON E R. Elastic properties of metals and alloys. II. Copper[J]. Journal of Physical and Chemical Reference Data, 1974, 3(4): 897-935. [14] HUANG Y G. A user-material subroutine incroporating single crystal plasticity in the ABAQUS finite element program[M]. Cambridge: Harvard Univ, 1991: 1-21. [15] HUTCHINSON J W. Elastic-plastic behaviour of polycrystalline metals and composites[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1970, 319(1537): 247-272. [16] SKELTON R P. Energy criterion for high temperature low cycle fatigue failure[J]. Materials Science and Technology, 1991, 7(5): 427-440. [17] XIE M W, CHEN G, YANG J, et al. Temperature and rate-dependent deformation behaviors of SAC305 solder using crystal plasticity model[J]. Mechanics of Materials, 2021, 157(6): 103834. [18] LEI M Q, WANG Y X, YANG X F, et al. Microstructure evolution and mechanical behavior of copper through-silicon via structure under thermal cyclic loading[J]. Microelectronics Reliability, 2022, 136: 114730. [19] YOU J H, MISKIEWICZ M. Material parameters of copper and CuCrZr alloy for cyclic plasticity at elevated temperatures[J]. Journal of Nuclear Materials, 2008, 373(1/2/3): 269-274. [20] OMAIREY S L, DUNNING P D, SRIRAMULA S. Development of an ABAQUS plugin tool for periodic RVE homogenisation[J]. Engineering with Computers, 2019, 35(2): 567-577. [21] SHIE K C, HSU P N, LI Y J, et al. Effect of bonding strength on electromigration failure in Cu-Cu bumps[J]. Materials, 2021, 14(21): 6394. [22] HULL D, BACON D J. Introduction to Dislocations[M]. 5th ed. Amsterdam: Elsevier, 2011. [23] CHOU T C, YANG K M, LI J C, et al. Investigation of pillar–concave structure for low-temperature Cu–Cu direct bonding in 3-D/2.5-D heterogeneous integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(8): 1296-1303. [24] MORROW J D. Cyclic plastic strain energy and fatigue of metals[J]. American Society for Testing and Materials. 1964: 45-87. [25] NIU F F, WANG X B, YANG S H, et al. Low-temperature Cu/SiO2 hybrid bonding based on Ar/H2 plasma and citric acid cooperative activation for multi-functional chip integration[J]. Applied Surface Science, 2024, 648: 159074.
|