[1] BAZZI H, AZIZA H, MOREAU M, et al. Performances and stability analysis of a novel 8T1R non-volatile SRAM (NVSRAM) versus variability[J]. Journal of Electronic Testing, 2021, 37(4): 515-532. [2] JAISWAL S, GUPTA S K. Proposal and analysis of a high read and write noise margin 6T-SRAM cell using novel core insulator double-gate (CIDG) MOSFETs[J]. Journal of Electronic Materials, 2024, 53(12): 8087-8097. [3] TRIPATHI S, CHOUDHARY S, MISRA P K. A novel STT–SOT MTJ-based nonvolatile SRAM for power gating applications[J]. IEEE Transactions on Electron Devices, 2022, 69(3): 1058-1064. [4] MAJUMDAR S. Single bit-line differential sensing based real-time NVSRAM for low power applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(7): 2623-2627. [5] MAJUMDAR S, KINGRA S K, SURI M N. Programming scheme based optimization of hybrid 4T-2R OxRAM NVSRAM[J]. Semiconductor Science and Technology, 2017, 32(9): 094008. [6] PHILIP T M, BREW K W, LI N, et al. Design of projected phase-change memory mushroom cells for low-resistance drift[J]. MRS Bulletin, 2023, 48(3): 228-236. [7] CHEN K, HAN J, LOMBARDI F. On the restore operation in MTJ-based nonvolatile SRAM cells[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(11): 2695-2699. [8] OHSAWA T, KOIKE H, MIURA S, et al. A 1 mb nonvolatile embedded memory using 4T2MTJ cell with 32 b fine-grained power gating scheme[J]. IEEE Journal of Solid-State Circuits, 2013, 48(6): 1511-1520. [9] YAMAMOTO S, SUGAHARA S. Nonvolatile static random access memory using magnetic tunnel junctions with current-induced magnetization switching architecture[J]. Japanese Journal of Applied Physics, 2009, 48(4R): 043001. [10] SHUTO Y, YAMAMOTO S, SUGAHARA S. Nonvolatile static random access memory based on spin-transistor architecture[J]. Journal of Applied Physics, 2009, 105(7): 07C933. [11] KANG W, LV W F, ZHANG Y G, et al. Low store power, high speed, high density, nonvolatile SRAM design with spin hall effect-driven magnetic tunnel junctions[J]. IEEE Transactions on Nanotechnology, 2017, 16(1):148-154. [12] YODA H, FUJITA S, SHIMOMURA N, et al. Progress of STT-MRAM technology and the effect on normally-off computing systems[C]//2012 International Electron Devices Meeting, San Francisco, CA, USA, 2012. [13] WORLEDGE D C, HU G. A snapshot review of double magnetic junctions for STT-MRAM[J]. MRS Advances, 2023, 8(5): 131-137. [14] SHAO D F, JIANG Y Y, DING J, et al. Néel spin currents in antiferromagnets[J]. Physical Review Letters, 2023, 130(21): 216702. [15] 李嘉威, 吴楚彬, 王超, 等. 应用于STT-MRAM存储器的高可靠灵敏放大器设计[J]. 电子与封装, 2023, 23(4): 040306. [16] GAIDIS M C, O’SULLIVAN E J, NOWAK J J, et al. Two-level BEOL processing for rapid iteration in MRAM development[J]. IBM Journal of Research and Development, 2006, 50(1): 41-54. [17] GROSSAR E, STUCCHI M, MAEX K, et al. Read stability and write-ability analysis of SRAM cells for nanometer technologies[J]. IEEE Journal of Solid-State Circuits, 2006, 41(11): 2577-2588. [18] SINGH J, MOHANTY S P, PRADHAN D K. Robust SRAM designs and analysis[M]. Berlin: Springer Science and Business Media, 2012: 31-56. [19] ZHAO W, BELHAIRE E, MISTRAL Q, et al. Integration of spin-RAM technology in FPGA circuits[C]//2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, Shanghai, China, 2006: 799-802. [20] GARCíA-?USTES M A, HUMIRE F R, LEON A O. Self-organization in the one-dimensional Landau–Lifshitz–Gilbert–Slonczewski equation with non-uniform anisotropy fields[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 96: 105674.
|