[1] NORMAND E, BAKER T J. Altitude and latitude variations in avionics SEU and atmospheric neutron flux[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1484-1490. [2] TABER A, NORMAND E. Single event upset in avionics[J]. IEEE Transactions on Nuclear Science, 1993, 40(2): 120-126. [3] PENG C Y, HUANG J T, LIU C Y, et al. Radiation-hardened 14T SRAM bitcell with speed and power optimized for space application[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(2): 407-415. [4] GUO J, ZHU L, LIU W Y, et al. Novel radiation-hardened-by-design (RHBD) 12T memory cell for aerospace applications in nanoscale CMOS technology[J]. IEEE Transactions on Very Large Scale Integration Systems, 2017, PP(5): 1-8. [5] CALIN T, NICOLAIDIS M. Upset hardened memory design for submicron CMOS technology[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2874-2878. [6] IBE E, TANIGUCHI H, YAHAGI Y, et al. Impact of scaling on neutron-induced soft error in SRAMs from a 250 nm to a 22 nm design rule[J]. IEEE Transactions on Electron Devices, 2010, 57(7): 1527-1538. [7] JAHINUZZAMAN S M, RENNIE D J, SACHDEV M. A soft error tolerant 10T SRAM bit-cell with differential read capability[J]. IEEE Transactions on Nuclear Science, 2009, 56(6): 3768-3773. [8] DANG L, JIN S K, CHANG I J. We-quatro: radiation-hardened SRAM cell with parametric process variation tolerance[J]. IEEE Transactions on Nuclear Science, 2017(9): 1-1. [9] GUO J, ZHU L, Sun Y, et al. Design of area-ef?cient and highly reliable RHBD 10T memory cell for aerospace applications[J]. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2018, 26(5): 991994. [10] RAJAEI R, ASGARI B, TABANDEH M, et al. Design of robust SRAM cells against single-event multiple effects for nanometer technologies[J]. IEEE Transactions on Device and Materials Reliability, 2015, 15(3): 429-436. [11] RAJAEI R, ASGARI B, TABANDEH M, et al. Single event multiple upset-tolerant SRAM cell designs for nano-scale CMOS technology[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2017, 25(2): 1-10. [12] EFTAXIOPOULOS N, AXELOS N, PEKMESTZI K. Low latency radiation tolerant self-repair reconfigurable SRAM architecture[J]. Microelectronics Reliability, 2016, 56: 202-211. [13] LI Y Q, WANG H B, LIU R, et al. A 65 nm temporally hardened flip-flop circuit[J]. IEEE Transactions on Nuclear Science, 2016, 63(6): 2934-2940. [14] LE D, KANG M, Kim J, et al. Studying the variation effects of radiation hardened quatro SRAM bit-cell[J]. IEEE Transactions on Nuclear Science, 2016, 63(4): 2399-2401. [15] WANG J, NALAM S, CALHOUN B H. Analyzing static and dynamic write margin for nanometer SRAMs[J]. IEEE, 2008: 129-134. [16] 温亮.65 nm工艺高性能SRAM的研究与实现[D].长沙:国防科学技术大学,2011. [17] ZHANG H, HUI J, ASSIS T R, et al. Effects of threshold voltage variations on single-event upset response of sequential circuits at advanced technology nodes[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 457-463. [18] PAL S, MOHAPATRA S, KI W H, et al. Design of soft-error-aware SRAM with multi-node upset recovery for aerospace applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(6): 2470-2480. [19] JIANG J, XU Y, ZHU W, et al. Quadruple cross-coupled latch-based 10T and 12T SRAM bit-cell designs for highly reliable terrestrial applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(3): 967-977. [20] WU Z Y, CHEN S M. nMOS transistor location adjustment for N-hit single-event transient mitigation in 65-nm CMOS bulk technology[J]. IEEE Transactions on Nuclear Science, 2017. [21] GUO J, XIAO L, WANG T, et al. Soft error hardened memory design for nanoscale complementary metal oxide semiconductor technology[J]. IEEE Transactions on Reliability, 2015, 64(2): 596-602. [22] GUO J, XIAO L, MAO Z. Novel low-power and highly reliable radiation hardened memory cell for 65 nm CMOS technology[J]. IEEE Transactions on Circuits and Systems I Regular Papers, 2017, 61(7): 1994-2001. [23] WANG H B, BI J S, LI M L, et al. An area efficient SEU-tolerant latch design[J]. IEEE Transactions on Nuclear Science, 2014, 61(6): 3660-3666.
|