[1] 王帅奇, 邹贵生, 刘磊. 先进封装中铜-铜低温键合技术研究进展[J]. 焊接学报, 2022, 43(11): 112-125. [2] YANG G L, SHI T L, CHANG L, et al. A study on regulating the residual stress of electroplated Cu by manipulating the nanotwin directions[J]. Micromachines, 2024, 15(11): 1370. [3] HUANG Y C, LIN Y X, HSIUNG C K, et al. Cu-based thermocompression bonding and Cu/dielectric hybrid bonding for three-dimensional integrated circuits (3D ICs) application[J]. Nanomaterials, 2023, 13(17): 2490. [4] LEE Y G, MCINERNEY M, JOO Y C, et al. Copper bonding technology in heterogeneous integration[J]. Electronic Materials Letters, 2024, 20(1): 1-25. [5] LU L, SHEN Y F, CHEN X H, et al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304(5669): 422-426. [6] HSIAO H Y, LIU C M, LIN H-W, et al. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper[J]. Science, 2012, 336(6084): 1007-1010. [7] BAI Y, HU H, LING H Q, et al. Communication: fabrication of vertical nanotwinned copper with (220) texture by direct current electrodeposition[J]. Journal of the Electrochemical Society, 2021, 168(8): 082506. [8] CHEN K X, GAO L Y, LI Z, et al. Research progress of electroplated nanotwinned copper in microelectronic packaging[J]. Materials, 2023, 16(13): 4614. [9] WANG Y, HUANG Y T, LIU Y X, et al. Thermal instability of nanocrystalline Cu enables Cu-Cu direct bonding in interconnects at low temperature[J]. Scripta Materialia, 2022, 220: 114900. [10] MIRKARIMI L, UZOH C, SUWITO D, et al. The influence of Cu microstructure on thermal budget in hybrid bonding[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 162-167. [11] ZHANG X, MISRA A, WANG H, et al. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning[J]. Acta Materialia, 2004, 52(4): 995-1002. [12] LU L, CHEN X, HUANG X, et al. Revealing the maximum strength in nanotwinned copper[J]. Science, 2009, 323(5914): 607-610. [13] LAI J Y, TRAN D P, YANG S C, et al. Stress relaxation and grain growth behaviors of (111)-preferred nanotwinned copper during annealing[J]. Nanomaterials, 2023, 13(4): 709. [14] 金帅, 潘庆松, 卢磊. 电流密度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2013, 49(5): 635-640. [15] LIU C M, LIN H-W, LU C L, et al. Effect of grain orientations of Cu seed layers on the growth of-oriented nanotwinned Cu[J]. Scientific Reports, 2014, 4: 6123. [16] 金帅, 程钊, 潘庆松, 等. 添加剂浓度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报2016, 52(8): 973-979. [17] SUN F L, GAO L Y, LIU Z Q, et al. Electrodeposition and growth mechanism of preferentially orientated nanotwinned Cu on silicon wafer substrate[J]. Journal of Materials Science & Technology, 2018, 34(10): 1885-1890. [18] ANDEROGLU O, MISRA A, WANG H, et al. Epitaxial nanotwinned Cu films with high strength and high conductivity[J]. Applied Physics Letters, 2008, 93(8): 083108. [19] XU D, KWAN W L, CHEN K, et al. Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition[J]. Applied Physics Letters, 2007, 91(25): 254105. [20] SUN F L, LIU Z Q, LI C F, et al. Bottom-up electrodeposition of large-scale nanotwinned copper within 3D through silicon via[J]. Materials, 2018, 11(2): 319. [21] LIU T-C, LIU C M, HSIAO H Y, et al. Fabrication and characterization of (111)-oriented and nanotwinned Cu by DC electrodeposition[J]. Crystal Growth & Design, 2012, 12(10): 5012-5016. [22] 金帅, 潘庆松, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报,2013, 49(5): 428-434. [23] TSENG C H, CHEN C. Growth of highly (111)-oriented nanotwinned Cu with the addition of sulfuric acid in CuSO4 based electrolyte[J]. Crystal Growth & Design, 2019, 19(1): 81-89. [24] ZHANG Y B, GAO L Y, TAO J L, et al. The mechanical property and microstructural thermal stability of gradient-microstructured nanotwinned copper films electrodeposited on the highly (111)-orientated substrates[J]. Materials Today Communications, 2024, 38: 108182. [25] TRAN D P, LI H H, TSENG I H, et al. Enhancement of electromigration lifetime of copper lines by eliminating nanoscale grains in highly-oriented nanotwinned structures[J]. Journal of Materials Research and Technology, 2021, 15: 6690-6699. [26] LI Z G, GAO L Y, LIU Z Q. The effect of transition layer on the strength of nanotwinned copper film by DC electrodeposition[C]// 2020 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 2020: 1-3. [27] TSENG C H, TSENG I H, HUANG Y P, et al. Kinetic study of grain growth in highly (111)-preferred nanotwinned copper films[J]. Materials Characterization, 2020, 168: 110545. [28] LIU C M, LIN H W, HUANG Y S, et al. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu[J]. Scientific Reports, 2015, 5: 9734. [29] TSENG C H, TU K N, CHEN C. Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding[J]. Scientific Reports, 2018, 8(1): 10671. [30] ZHANG M H, GAO L Y, LI J J, et al. Characterization of Cu-Cu direct bonding in ambient atmosphere enabled using (111)-oriented nanotwinned-copper[J]. Materials Chemistry and Physics, 2023, 306: 128089. [31] CUI B Z, HAN K, XIN Y, et al. Highly textured and twinned Cu films fabricated by pulsed electrodeposition[J]. Acta Materialia, 2007, 55(13): 4429-4438. [32] CHAN T C, CHUEH Y L, LIAO C N. Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition[J]. Crystal Growth & Design, 2011, 11(11): 4970-4974. [33] LI S J, ZHU Q S, ZHENG B D, et al. Nano-scale twinned Cu with ultrahigh strength prepared by direct current electrodeposition[J]. Materials Science and Engineering: A, 2019, 758: 1-6. [34] 张妍嘉, 凌惠琴, 杭弢, 等. 聚二硫二丙烷磺酸钠对电沉积纳米孪晶铜的影响[J]. 电镀与精饰, 2023, 45(8): 1-6. [35] CHEN P X, LI C Y, HAN S L, et al. Abnormal grain growth of (110)-oriented perpendicular nanotwinned copper into ultra-large grains at low temperatures[J]. Journal of Materials Science & Technology, 2024, 203: 61-65. [36] LI H H, LIANG Z L, NING Z Y, et al. Low-temperature Cu-Cu direct bonding with ultra-large grains using highly (110)-oriented nanotwinned copper[J]. Materials Characterization, 2024, 217: 114455. [37] LU L, TAO N R, WANG L B, et al. Grain growth and strain release in nanocrystalline copper[J]. Journal of Applied Physics, 2001, 89(11): 6408-6414. [38] ZHANG R X, TAN L Y, LI M. Micron copper needles prepared by electrodeposition for low temperature bonding[C]//2019 20th International Conference on Electronic Packaging Technology(ICEPT), Hong Kong, China, 2019: 1-4. [39] 吴蕴雯, 杭弢, 凌惠琴, 等. 芯片高密度互连电子电镀成形与性能调控技术研究[J]. 中国科学: 化学, 2023, 53(10): 1835-1852. [40] DENG Y P, LING H Q, FENG X, et al. Electrodeposition and characterization of copper nanocone structures[J]. CrystEngComm, 2015, 17(4): 868-876.
|