[1] 赵瑾, 李威, 钟毅, 等. 玻璃通孔三维互连技术中的应力问题[J]. 机械工程学报, 2022, 58(2): 246-258. [2] 黎科, 张鑫硕, 夏启飞, 等. 集成电路互连微纳米尺度硅通孔技术进展[J]. 电子与封装, 2024, 24(6): 060111. [3] 钟毅, 江小帆, 喻甜, 等. 芯片三维互连技术及异质集成研究进展[J]. 电子与封装, 2023, 23(3): 030102. [4] 张名川, 靖向萌, 王京, 等. 应用于TGV的ICP玻璃刻蚀工艺研究[J]. 真空科学与技术学报, 2014, 34(11): 1222-1227. [5] OKORO C, JAYARAMAN S, POLLARD S. Understanding and eliminating thermo-mechanically induced radial cracks in fully metallized through-glass via (TGV) substrates[J]. Microelectronics Reliability, 2021, 120: 114092. [6] 于大全. 硅通孔三维封装技术[M]. 北京: 电子工业出版社, 2021. [7] 林来存, 王启东, 邱德龙, 等. 基于光敏玻璃的垂直互连通孔仿真与电镀工艺研究[J]. 北京理工大学学报, 2018, 38(1): 52-57. [8] YU T, CHEN X, WANG M Y, et al. On-chip single/dual-notch-band half-mode substrate integrated plasmonic waveguide filters based on through glass via technology[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2025, 15(4): 880-883. [9] YU T, YU D Q. Electrical performance characterization of glass substrate for millimeter-wave applications[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(2): 126. [10] LAI Y Y, PAN K, PARK S. Thermo-mechanical reliability of glass substrate and through glass vias (TGV): a comprehensive review[J]. Microelectronics Reliability, 2024, 161: 115477. [11] NIU X B, STAGON S P, HUANG H C, et al. Smallest metallic nanorods using physical vapor deposition[J]. Physical Review Letters, 2013, 110(13): 136102. [12] OPIEKUN Z A, OR?OWICZ W A. Physical vapour deposition coatings on elements of pressure casting dies[J]. Surface Engineering, 2006, 22(1): 69-72. [13] LAXANE R B, BHIDE R S, PATIL A S, et al. Characterisation of chromium nitride physical vapour deposition coating on diesel engine pistons[J]. Surface Engineering, 2006, 22(1): 78-80. [14] TIAN W, DAI J Y, ZHANG L J, et al. Microstructure and properties of nanocrystalline Cu-Ta thin films prepared by direct current magnetron sputtering[J]. Surface Engineering, 2021, 37(2): 160-168. [15] SHARKO S A, SEROKUROVA A I, NOVITSKII N N, et al. A new approach to the formation of nanosized gold and beryllium films by ion-beam sputtering deposition[J]. Nanomaterials, 2022, 12(3): 470. [16] CHO S, FUKE I, PRABHU V. Motion planning for coating process optimisation in electron beam physical vapour deposition[J]. Surface Engineering, 2005, 21(4): 279-289. [17] RAHMANI H, CABANAS I L. Development of alloy coatings by electron beam physical vapour deposition method[J]. Surface Engineering, 2021, 37(3): 325-333. [18] JEON N L, NUZZO R G. Physical and spectroscopic studies of the nucleation and growth of copper thin films on polyimide surfaces by chemical vapor deposition[J]. Langmuir, 1995, 11(1): 341-355. [19] ALI M, üRGEN M, KAWASHIMA A. High purity diamond films synthesised by chemical vapour deposition[J]. Surface Engineering, 2012, 28(10): 791-795. [20] TRIPATHI T S, WILKEN M, HOPPE C, et al. Atomic layer deposition of copper metal films from Cu(acac)2 and hydroquinone reductant[J]. Advanced Engineering Materials, 2021, 23(10): 2100446. [21] GUPTA B, HOSSAIN M A, RIAZ A, et al. Recent advances in materials design using atomic layer deposition for energy applications[J]. Advanced Functional Materials, 2022, 32(3): 2109105. [22] SUN P, SHEN X X, XU P, et al. Conductive polyaniline film synthesized through in situ polymerization as a conductive seed layer for hole metallization of printed circuit boards[J]. Applied Surface Science, 2024, 655: 159649. [23] 孙鹏, 沈喜训, 马祥, 等. 印制线路板的孔金属化技术的研究进展[J]. 电镀与精饰, 2023, 45(12): 89-94. [24] TOUIR R, LARHZIL H, EBNTOUHAMI M, et al. Electroless deposition of copper in acidic solutions using hypophosphite reducing agent[J]. Journal of Applied Electrochemistry, 2006, 36(1): 69-75. [25] ANIK T, EL HALOUI A, EBN TOUHAMI M, et al. Influence of N-N dimethyl formamide on electroless copper plating using hypophosphite as reducing agent[J]. Surface and Coatings Technology, 2014, 245: 22-27. [26] HUNG A. Electroless Copper deposition with hypophosphite as reducing agent[J]. Plating and Surface Finishing, 1988, 75(1):62-65. [27] HUANG G Y, XU S M, XU G, et al. Preparation of fine nickel powders via reduction of nickel hydrazine complex precursors[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(2): 389-393. [28] KARTHIKEYAN S, VASUDEVAN T, SRINIVASAN K N, Studies on formaldehyde-free electroless copper deposition[J]. Plating and Surface Finishing, 2002, 89(7): 54-56. [29] ZHANG Y, ZONG B Y, JIN J, et al. Electroless copper plating on particulate reinforcements and effects on mechanical properties of SiCp/Fe composite[J]. Surface Engineering, 2015, 31(3): 232-239. [30] PAUNOVIC M. Fundamentals of electrochemical deposition[M]. New Jersey: WileyInterscience publications; 2006. [31] GHOSH S. Electroless copper deposition: a critical review[J]. Thin Solid Films, 2019, 669: 641-658. [32] NOBARI N, BEHBOUDNIA M, MALEKI R. Palladium-free electroless deposition of pure copper film on glass substrate using hydrazine as reducing agent[J]. Applied Surface Science, 2016, 385: 9-17. [33] CHEN Y Z, ZHANG J H, GAO L B, et al. An optimized NiP seed layer coating method for through glass via (TGV)[J]. Microelectronic Engineering, 2022, 257: 111735. [34] KOBETS A V, VOROBYOVA T N. Palladium catalyst synthesis through Sol-gel processing for electroless nickel deposition on glass[J]. Thin Solid Films, 2016, 616: 793-799. [35] KAEWVILAI A, TANATHAKORN R, LAOBUTHEE A, et al. Electroless copper plating on nano-silver activated glass substrate: a single-step activation[J]. Surface and Coatings Technology, 2017, 319: 260-266. [36] ONITAKE S, ONISHI T. Direct copper metallization on glass technology x-substrate[C]// 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac), Gothenburg, 2017: 35-37. [37] OKABE K, KAGAMI T, HORIUCHI Y, et al. Copper plating on glass using a solution processed copper-titanium oxide catalytic adhesion layer[J]. Journal of the Electrochemical Society, 2016, 163(5): D201-D205. [38] CHENG C W, CHAN P-F, DOW W P. Direct copper pattern plating on glass and ceramic substrates using an Al-doped ZnO as an adhesive and conducting layer[J]. Journal of the Electrochemical Society, 2017, 164(12): D687-D693. [39] XU L, LIU G L, ZHANG H W, et al. Nano-silver doped zinc oxides adhesion layer for wet copper metallization of glass substrates[J]. Journal of the Electrochemical Society, 2025, 172(1): 012507. [40] CHANG Y H, WANG W Y, TSENG P L, et al. All-solution-processed metallization of high aspect ratio through glass vias (HAR-TGVs) with a high adhesion promoting layer (APL)[C]// 2023 18th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, China, 2023: 251-254. [41] LIU Z C, HE Q G, TANG J X, et al. A new approach on the active treatment for electroless copper plating on glass[J]. Chinese Journal of Chemistry, 2003, 21(1): 1-3. [42] LIU Z C, HE Q G, HOU P, et al. Electroless plating of copper through successive pretreatment with silane and colloidal silver[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257: 283-286. [43] KAWASE T, FUJ T, MINAGAWA M, et al. Surface modification of glass by end-capped fluoroalkyl-functional silanes[J]. Journal of Adhesion Science and Technology, 1996, 10(10): 1031-1046. [44] HU J D, LI W, CHEN J, et al. Novel plating solution for electroless deposition of gold film onto glass surface[J]. Surface and Coatings Technology, 2008, 202(13): 2922-2926. [45] BAJPAI V K, PANDEY H, SINGH T, et al. Ultrasonic-assisted surface roughening of glass substrate to improve adhesion of electroless nickel seed layer in microsystems packaging[J]. Materials Letters, 2022, 316: 132033. [46] MúGICA-VIDAL R, ALBA-ELíAS F, SAINZ-GARCíA E, et al. Atmospheric pressure air plasma treatment of glass substrates for improved silver/glass adhesion in solar mirrors[J]. Solar Energy Materials and Solar Cells, 2017, 169: 287-296. [47] YANG L Q, YANG X L, GAO F, et al. Enhanced adhesion of copper films on fused silica glass substrate by plasma pre-treatment[J]. Materials, 2023, 16(14): 5152. [48] JEONG E, ZHAO G Q, LEE S G, et al. Exploring SiOx as an effective adhesion promoter for Ag on glass and polymer substrates[J]. Applied Surface Science, 2025, 688: 162342. [49] ABU BAKAR A, HASHIM N H, TAJUDDIN H A, et al. Eliminating adhesive layers in silver metallization: a comparative study of glass cleaning methods for enhanced hydroxylation and adhesion[J]. Current Applied Physics, 2025, 71: 138-143.
|