中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装

• 封装、组装与测试 •    下一篇

基于WLCSP封装的应力分析和再布线结构优化

张春颖,江伟,刘坤鹏,薛兴涛,林正忠   

  1. 盛合晶微半导体(江阴)有限公司,江苏 无锡  214437
  • 收稿日期:2025-06-12 修回日期:2025-09-17 出版日期:2025-09-29 发布日期:2025-09-29
  • 通讯作者: 江伟

Stress Analysis and Redistribution Layer Structural Optimization Based on WLCSP Packaging

ZHANG Chunying, JIANG Wei, LIU Kunpeng, XUE Xingtao, LIN Zhengzhong   

  1. SJ Semiconductor (Jiangyin) Corporation, Jiangyin 214437, China
  • Received:2025-06-12 Revised:2025-09-17 Online:2025-09-29 Published:2025-09-29

摘要: 晶圆级芯片封装通过引入再布线技术有效地增加单位面积的IO数量,是实现高密度、高性能封装的重要技术之一。WLCSP器件在服役期间要经受较高的温度变化受到不同材料热膨胀系数失配的影响,进而容易产生分层和开裂,甚至导致封装互连失效。芯片互连失效的根本原因是应力过大,再布线级顶层金属的不均匀性会严重影响应力大小。基于此失效问题,研究了WLCSP结构中RDL和Top metal的稀疏程度、稀疏位置、RDL连续性以及芯片结构对应力的影响,并针对WLCSP结构中芯片失效问题给出规律性总结和优化建议。研究结果表明:1P2M的RDL和Top metal分布不均匀对应力均有很大影响,RDL和Top metal稀疏位置对芯片应力影响不大,RDL连续性越好应力越小,Top metal稀疏面积越大应力越大;相比1P1M结构2P2M能明显降低芯片应力,Top metal分布不均匀对芯片应力影响不大,而RDL的分布不均对芯片应力影响较大。

关键词: 仿真, WLCSP, 芯片应力, RDL, Top metal

Abstract: Wafer-level chip-scale packaging (WLCSP) leverages redistribution layer (RDL) technology to markedly increase the number of I/Os per unit area, making it a key enabler for high-density, high-performance packages. During service, WLCSP devices experience pronounced temperature excursions; the mismatch in coefficients of thermal expansion (CTE) among dissimilar materials induces delamination, cracking, and ultimately interconnection failure. The root cause of these failures is excessive stress, which is strongly influenced by the non-uniformity of the top-metal layer in the RDL stack. Motivated by this reliability challenge, we systematically investigated how the degree and location of sparsity in both the RDL and top metal, RDL continuity, and overall package architecture affect on-chip stress. The study culminates in generalized design rules and optimization guidelines for mitigating chip-level failures in WLCSP. Key findings are as follows: In the 1P2M configuration, non-uniform distributions of both RDL and top metal significantly elevate stress; however, the precise sparse location within each layer has limited impact. Greater RDL continuity reduces stress, whereas larger top-metal sparse areas increase stress. Transitioning from 1P1M to 2P2M markedly lowers overall chip stress. In the 2P2M architecture, non-uniform top-metal patterns exert negligible influence on stress, while RDL non-uniformity remains a dominant factor.

Key words: simulation, WLCSP, chip stress, RDL, top metal