中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装

• 材料、器件与工艺 •    下一篇

MLCC电-热应力击穿失效机制与可靠性提高技术

王静,孙慧楠,易凤举   

  1. 成都宏科电子科技有限公司,成都  610199
  • 收稿日期:2025-10-21 修回日期:2025-11-20 出版日期:2025-11-28 发布日期:2025-11-28
  • 通讯作者: 孙慧楠

Mechanisms of Electric-Thermal Stress Breakdown Failure in MLCC and Reliability Enhancement Techniques

WANG Jing,SUN Huinan,YI Fengju   

  1. Chengdu Hongke Electronic Technology Co., Ltd., Chengdu 610199, China
  • Received:2025-10-21 Revised:2025-11-20 Online:2025-11-28 Published:2025-11-28

摘要: 针对多层陶瓷电容器(MLCC)电-热应力击穿失效问题,系统剖析了其失效模式、机理及分析技术,并提出可靠性提升方案。综合运用电气性能测试、金相显微镜观察、加电筛选等手段,结合研磨解剖分析,精准定位内部隐性短路缺陷及其分布特征。研究发现,电-热应力击穿主要体现为“介质层离子迁移”与“氧空位富集”引发的绝缘性能退化,其中介质层厚度≤0.6 μm的超薄层MLCC在高温高压环境下失效风险显著升高。通过“改进核心制造环节”、“电路设计优化”和“引入柔性端电极结构”等,可以有效降低MLCC失效率。案例验证表明,引入柔性端电极结构和印制电路板(PCB)的散热设计可将常规型MLCC高温环境下失效率从0.5%降低至0.01%。本研究为高可靠领域MLCC失效分析提供有效方法体系,对智能制造工艺优化具有指导意义。

关键词: 多层陶瓷电容器, 电-热应力击穿, 失效分析, 可靠性提升, 氧空位迁移

Abstract: To address the electrical-thermal stress breakdown failure of Multilayer Ceramic Capacitor (MLCC), this study systematically analyzes their failure modes. mechanisms and analytical technologies, also proposes reliability improvement solutions. By comprehensively applying electrical performance testing, metallographic microscope observation and electrical screening, combined with grinding and dissection analysis, the internal hidden short-circuit defects and their distribution characteristics are accurately identified. The research reveals that electrical-thermal stress breakdown is mainly manifested as insulation performance degradation caused by "dielectric layer ion migration" and "oxygen vacancy enrichment". Particularly, ultra-thin MLCC with a dielectric layer thickness of ≤0.6 μm exhibit a significantly increased failure risk under high-temperature and high-voltage environments. The failure rate of MLCC can be effectively reduced through measures such as "improving core manufacturing processes", "optimizing circuit design", and "introducing flexible terminal electrode structures". Case verification shows that the introduction of flexible terminal electrode structures and heat dissipation design of printed circuit board(PCB) can reduce the failure rate of conventional MLCC from 0.5% to 0.01% in high-temperature environments.  This study provides an effective methodological system for failure analysis of MLCC in high-reliability fields and holds guiding significance for the optimization of intelligent manufacturing processes.

Key words: multilayer ceramic capacitor (MLCC), electrical-thermal stress breakdown, failure analysis, reliability improvement, oxygen vacancy migration