中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装

• 封装、组装与测试 •    下一篇

混合集成电路用AlN-AMB基板电容焊接可靠性研究

董晓伟1,2,董布克1,王睿1,赵斯阳1   

  1. 1. 中国电子科技集团公司第四十三研究所,合肥  230088;2. 安徽省微系统重点实验室,合肥  230088
  • 收稿日期:2025-10-29 修回日期:2025-12-22 出版日期:2025-12-24 发布日期:2025-12-24
  • 通讯作者: 董晓伟
  • 基金资助:
    安徽省科技创新攻坚计划(202423i08050002)

Soldering Reliability of Capacitors on AlN-AMB Substrates for Hybrid Integrated Circuits

DONG Xiaowei1,2, DONG Buke1, WANG Rui1, ZHAO Siyang1   

  1. 1. The 43rd Research Institute of CETC, Hefei 230088, China; 2. Anhui Provincial Key Laboratory of Microsystem, Hefei 230088, China
  • Received:2025-10-29 Revised:2025-12-22 Online:2025-12-24 Published:2025-12-24

摘要: 基于有限元仿真方法,构建了热-机械耦合模型,系统研究了陶瓷基板材质、焊盘几何参数、导体布局方式、覆铜区域分布及基板厚度等因素对电容焊接根部应力的影响规律。结果表明,相比于Al2O3-DBC基板(CTE=7.0×10-6/K),AIN陶瓷(CTE=4.4×10-6/K)与BaTiO3电容(CTE~9.0×10-6/K)之间高达104.5%的热膨胀系数(CTE)差异是导致AIN-AMB基板焊接电容根部应力增大56.8%(178.9 MPa)的关键因素。通过优化电容焊盘尺寸,确定的较优设计参数,电容根部应力可降低40.5%(106.5 MPa),此外通过合理布局导体及覆铜区域位相关系,可有效降低电容根部所受应力。建立的可靠性预测模型为高可靠性混合集成电路的AlN覆铜基板设计提供了理论支撑。

关键词: 热机械应力, 有限元分析, 可靠性优化

Abstract: This study employed finite element simulation to establish a thermo-mechanical coupling model, systematically examining the effects of ceramic substrate material, pad geometric parameters, lead layout, copper cladding distribution, and substrate thickness on the stress at the capacitor soldering root. The results indicate that the key factor leading to the 56.8% increase (178.9 MPa) in stress at the capacitor soldering root on the AlN-AMB substrate is the significant 104.5% difference in the coefficient of thermal expansion (CTE) between AlN ceramic (CTE=4.4×10-6/K) and the BaTiO3 capacitor (CTE~9.0×10-6/K), compared to Al2O3-DBC substrates (CTE=7.0×10-6/K). By optimizing the capacitor pad size, the optimal design parameters determined in this study reduced the stress at the capacitor root by 40.5% (to 106.5 MPa). Furthermore, through rational layout of the conductors and the positional relationship of the copper-clad areas, the stress on the capacitor root can be further effectively reduced. The reliability prediction model established in this study provides a theoretical basis for the design of AlN copper-clad substrates for high-reliability hybrid integrated circuit substrates.

Key words: thermo-mechanical stress, finite element analysis, reliability optimization