[1] LI B D, CHAN P H, BARIS G, et al. Analysis of automotive camera sensor noise factors and impact on object detection[J]. IEEE Sensors Journal, 2022, 22(22): 22210-22219. [2] WOCIAL T, STEFANOV K D, MARTIN W E, et al. A method to achieve high dynamic range in a CMOS image sensor using interleaved row readout[J]. IEEE Sensors Journal, 2022, 22(22): 21619-21627. [3] OIKE Y. Evolution of image sensor architectures with stacked device technologies[J]. IEEE Transactions on Electron Devices, 2022, 69(6): 2757-2765. [4] HARUTA M, KIKKAWA J, KIMOTO K, et al. Comparison of detection limits of direct-counting CMOS and CCD cameras in EELS experiments[J]. Ultramicroscopy, 2022, 240: 113577. [5] SEO M W, KAWAHITO S, KAGAWA K, et al. A 0.27 e-rms read noise 220 μV/e- conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process[J]. IEEE Electron Device Letters, 2015, 36(12): 1344-1347. [6] CHEN Y, XU Y, CHAE Y, et al. A 0.7 e-rms temporal readout noise CMOS image sensor for low-light-level imaging[C]// 2012 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2012: 384-386. [7] STEFANOV K D, ZHANG Z G, DAMERELL C, et al. Performance of deep-depletion buried-channel n-MOSFETs for CMOS image sensors[J]. IEEE Transactions on Electron Devices, 2013, 60(12): 4173-4179. [8] ICHINO S, MAWAKI T, TERAMOTO A, et al. Statistical analyses of random telegraph noise in pixel source follower with various gate shapes in CMOS image sensor[J]. ITE Transactions on Media Technology and Applications, 2018, 6(3): 163-170. [9] CHAI S Y, CHOA S H. Reduction of fluorine diffusion and improvement of dark current using carbon implantation in CMOS image sensor[J]. Crystals, 2021, 11(9): 1106. [10] TERANISHI N, FUSE G, SUGITANI M. A review of ion implantation technology for image sensors [J]. Sensors, 2018, 18(7): 2358. [11] FERNáNDEZ MORONI G, ESTRADA J, CANCELO G, et al. Sub-electron readout noise in a skipper CCD fabricated on high resistivity silicon[J]. Experimental Astronomy, 2012, 34(1): 43-64. [12] CAPOCCIA R, BOUKHAYMA A, ENZ C. Experimental verification of the impact of analog CMS on CIS readout noise[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(3): 774-784. [13] YOUN S J, YUN S Y, LEE H, et al. Design of low-noise CMOS image sensor using a hybrid-correlated multiple sampling technique[J]. Sensors, 2023, 23(23): 9551. [14] BOUKHAYMA A, KRAXNER A, CAIZZONE A, et al. Comparison of two in pixel source follower schemes for deep subelectron noise CMOS image sensors[J]. IEEE Journal of the Electron Devices Society, 2022, 10: 687-695. [15] 杨涛, 吴孙桃, 郭东辉. CMOS图像传感器电路噪声分析[J]. 厦门大学学报(自然科学版), 2012, 51(3): 321-326. [16] 张梦, 姚若河, 刘玉荣, 等. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型[J]. 物理学报, 2020, 69(17): 351-359. [17] 李强, 金龙旭, 李国宁. 基于暗电流CMOS图像传感器固定模式噪声校正研究[J]. 液晶与显示, 2021, 36(2): 327-333. [18] 裴志军, 国澄明, 姚素英, 等. 一种CMOS图像传感器列FPN抑制技术[J]. 传感技术学报, 2004, 17(1): 78-80. [19] 李栋, 刘文平, 张冰, 等. CMOS图像传感器4T像素本底噪声分析[J]. 微电子学与计算机, 2014, 31(3): 138-141. [20] BOUKHAYMA A. Low noise CMOS image sensors[M]. Cham: Springer, 2018. [21] BOUKHAYMA A, PEIZERAT A, ENZ C. Temporal readout noise analysis and reduction techniques for low-light CMOS image sensors[J]. IEEE Transactions on Electron Devices, 2016, 63(1): 72-78. [22] BOUKHAYMA A, PEIZERAT A, ENZ C. Noise reduction techniques and scaling effects towards photon counting CMOS image sensors[J]. Sensors, 2016, 16(4): 514. [23] LEE J K, KIM S S, BAEK I G, et al. A 2.1 e– temporal noise and –105 dB parasitic light sensitivity backside-illuminated 2.3 μm-pixel voltage-domain global shutter CMOS image sensor using high-capacity DRAM capacitor technology[C]//2020 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020: 102-104. [24] ABARCA A, THEUWISSEN A. A CMOS image sensor dark current compensation using in-pixel temperature sensors[J]. Sensors, 2023, 23(22): 9109. [25] WAKABAYASHI H, SUZUKI A, KAINUMA T, et al. A 1/1.7 inch 20 Mpixel back-illuminated stacked CMOS image sensor with multi-functional modes[J]. ITE Transactions on Media Technology and Applications, 2016, 4(2): 136-141. [26] BOUKHAYMA A, CAIZZONE A, ENZ C. A CMOS image sensor pixel combining deep sub-electron noise with wide dynamic range[J]. IEEE Electron Device Letters, 2020, 41(6): 880-883. [27] PRIYADARSHINI N, SARKAR M. A 2 e-rms temporal noise CMOS image sensor with in-pixel 1/f noise reduction and conversion gain modulation for low light imaging[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(1): 185-195. [28] HAN L Q, THEUWISSEN A J P. A deep subelectron temporal noise CMOS image sensor with adjustable sinc-type filter to achieve photon-counting capability[J]. IEEE Solid-State Circuits Letters, 2021, 4: 113-116. [29] SEO M W, CHU M, JUNG H Y, et al. 2.45 e-rms low-random-noise, 598.5 mW low-power, and 1.2 kfps high-speed 2-Mp global shutter CMOS image sensor with pixel-level ADC and memory[J]. IEEE Journal of Solid-State Circuits, 2022, 57(4): 1125-1137. [30] JAINWAL K, SARKAR M. A 280-μ V temporal noise, 76-dB dynamic range CMOS image sensor with an in-pixel chopping-based low-frequency noise reduction technique[J]. IEEE Transactions on Electron Devices, 2023, 70(3): 1134-1142. [31] KIM S I, EUN CHANG K, PARK S, et al. Low-noise and high-performance 3D pixel transistor for sub-micron CMOS image sensors applications[C]// Proceedings of the International Image Sensor Workshop (IISW), Online event. 2021. [32] KIKUCHI Y, TOMITA M, HAYASHI T, et al. Noise performance improvements of 2-layer transistor pixel stacked CMOS image sensor with non-doped pixel-FinFETs[C]//2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2023: 1-2. [33] KITAMURA S, KIMIZUKA N, HONJO A, et al. Low-noise multi-gate pixel transistor for sub-micron pixel CMOS image sensors[C]//2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2022: 347-348. [34] WANG X Y, SNOEIJ M F, RAO P R, et al. A CMOS image sensor with a buried-channel source follower[C]//2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, USA, 2008. [35] MA J J, ZHANG D X, ELGENDY O A, et al. A 0.19 e-rms read noise 16.7 Mpixel stacked quanta image sensor with 1.1 μm-pitch backside illuminated pixels[J]. IEEE Electron Device Letters, 2021, 42(6): 891-894. [36] ZAITSU K, MATSUMOTO A, NISHIDA M, et al. A 2-layer transistor pixel stacked CMOS image sensor with oxide-based full trench isolation for large full well capacity and high quantum efficiency[C]//2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2022: 286-287. [37] LIU Y L, XU J T, ZHA W B, et al. A 1/f noise optimized correlated multiple sampling technique for complementary metal oxide semiconductor image sensor[J]. International Journal of Circuit Theory and Applications, 2023, 51(12): 5529-5542. [38] 刘嵘侃, 邢德智, 唐昭焕, 等. 低噪声CMOS图像传感器技术研究综述[J]. 半导体光电, 2020, 41(6): 768-773. [39] SEO M W, WANG T X, JUN S W, et al.A 0.44 e-rms read-noise 32 fps 0.5 Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset[C]//2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2017: 80-81. [40] PEIZERAT A, RENAUD G. Correlated multiple sampling impact analysis on 1/fE noise for image sensors[J]. Electronic Imaging, 2019, 31(9): 368. [41] PARK W, PIAO C X, LEE H, et al. CMOS image sensor with two-step single-slope ADCs and a detachable super capacitive DAC[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 849-853. [42] CHEN N, ZHONG S Y, ZOU M, et al. A low-noise CMOS image sensor with digital correlated multiple sampling[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(1): 84-94. [43] YEH S F, CHOU K-Y, TU H Y, et al. A 0.66 e-rms temporal-readout-noise 3D-stacked CMOS image sensor with conditional correlated multiple sampling (CCMS) technique[C]//2015 Symposium on VLSI Circuits (VLSI Circuits), Kyoto, Japan, 2015: C84-C85. [44] CHEN Y, XU Y, MIEROP A J, et al. Column-parallel digital correlated multiple sampling for low-noise CMOS image sensors[J]. IEEE Sensors Journal, 2012, 12(4): 793-799. [45] KAWAHITO S, SEO M W. Noise reduction effect of multiple-sampling-based signal-readout circuits for ultra-low noise CMOS image sensors[J]. Sensors, 2016, 16(11): 1867. [46] XU J T, WEI J H, CHEN Q M, et al. A low-power conditional analog correlated multiple sampling circuit for low-noise CMOS image sensor[J]. Microelectronics Journal, 2022, 123: 105428. [47] SUESS A, WILHELMSEN M, ZUO L, et al. Time domain noise analysis of oversampled CMOS image sensors[J]. IEEE Transactions on Electron Devices, 2022, 69(6): 2973-2978. [48] ZHOU Y X, QU Y, ZANG Q, et al. A low readout noise CMOS pixel based on the skipper technology[C]//2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China, 2022: 1-6. [49] KIM Y, JUNG Y, SUL H, et al. A 1/1.12-inch 1.4 μm pitch 50 Mpixel 65/28 nm stacked CMOS image sensor using mulitple sampling[C]//2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 2023: 1-4. [50] YOUN S J, YUN S Y, LEE H, et al. Design of low-noise CMOS image sensor using a hybrid-correlated multiple sampling technique[J]. Sensors, 2023, 23(23): 9551. [51] FREITAS L M C, MORGADO-DIAS F. Design improvements on fast, high-order, incremental sigma-delta ADCs for low-noise stacked CMOS image sensors[J]. Electronics, 2021, 10(16): 1936. [52] CHAO C Y, TU H, WU T, et al. CMOS image sensor random telegraph noise time constant extraction from correlated to uncorrelated double sampling[J]. IEEE Journal of the Electron Devices Society, 2017, 5(1): 79-89. [53] JUNG J, KWON D, LEE D H. Reduction of random noise in complementary metal oxide semiconductor image sensors by gate oxide interface control[J]. Japanese Journal of Applied Physics, 2006, 45(4S): 3466. [54] HSU P H, LEE Y R, CHEN C H, et al. A low-noise area-efficient column-parallel ADC with an input triplet for a 120-dB high dynamic range CMOS image sensor[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(12): 1939-1949. [55] FAN Q J, CHEN J H. A 1-GS/s 8-bit 12.01-fJ/conv.-step two-step SAR ADC in 28-nm FDSOI technology[J]. IEEE Solid-State Circuits Letters, 2019, 2(9): 99-102. [56] KULL L, LUU D, MENOLFI C, et al. A 10 b 1.5 GS/s pipelined-SAR ADC with background second-stage common-mode regulation and offset calibration in 14 nm CMOS FinFET[C]//2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2017: 474-475. [57] GUO Z J, YU N M, WU L S. A self-compensated approach for ramp kickback noise in CMOS image sensor column parallel single slope ADC[J]. Microelectronics Journal, 2022, 120: 105364. [58] OKADA C, UEMURA K, HUNG L, et al. A high-speed back-illuminated stacked CMOS image sensor with column-parallel kT/C-cancelling S&H and delta-sigma ADC[C]//2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2021: 116-118. [59] LI C Z, HAN B G, HE J, et al. A highly linear CMOS image sensor design based on an adaptive nonlinear ramp generator and fully differential pipeline sampling quantization with a double auto-zeroing technique[J]. Sensors, 2020, 20(4): 1046. [60] SNOEIJ M F, THEUWISSEN A J P, MAKINWA K A A, et al. A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction[J]. IEEE Journal of Solid-State Circuits, 2006, 41(12): 3007-3015. [61] MORISHITA F, SAITO W, IIZUKA Y, et al. A 30.2-μVrms horizontal streak noise 8.3-Mpixel 60-frames/s CMOS image sensor with skew-relaxation ADC and on-chip testable ramp generator for surveillance camera[J]. IEEE Journal of Solid-State Circuits, 2022, 57(10): 3103-3113. [62] NIE K M, ZHA W B, SHI X L, et al. A single slope ADC with row-wise noise reduction technique for CMOS image sensor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(9): 2873-2882. 虞致国(1979—),男,江西万年人,博士,教授,主要研究方向为数模混合芯片设计、高性能处理器设计、集成电路设计自动化(EDA)算法等。 |