[1] JEONG B, LEE J, CHOI J, et al. A 0.57 mW@1 FPS in-column analog CNN processor integrated into CMOS image sensor[J]. IEEE Access, 2023, 11: 61082-61090. [2] VAZQUEZ-FERNANDEZ E, GONZALEZ-JIMENEZ D. Face recognition for authentication on mobile devices[J]. Image and Vision Computing, 2016, 55: 31-33. [3] FATHY M E, PATEL V M, CHELLAPPA R. Face-based active authentication on mobile devices[C]// 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Queensland, Australia, 2015: 1687-1691. [4] PARK K, SONG M, KIM S Y. The design of a single-bit CMOS image sensor for iris recognition applications[J]. Sensors (Basel), 2018, 18(2): 669. [5] EKI R, YAMADA S, OZAWA H, et al. 9.6 A 1/2.3 inch 12.3 Mpixel with on-chip 4.97 TOPS/W CNN processor back-illuminated stacked CMOS image sensor[C]// 2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2021: 154-156. [6] CHAE Y, SOURI K, MAKINWA K A A. A 6.3 μW 20 bit incremental zoom-ADC with 6 ppm INL and 1 μV offset[J]. IEEE Journal of Solid-State Circuits, 2013, 48(12): 3019-3027. [7] PARK K, YEOM S, KIM S Y. Ultra-low power CMOS image sensor with two-step logical shift algorithm-based correlated double sampling scheme[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(11): 3718-3727. [8] HSU T H, CHEN G C, CHEN Y R, et al. A 0.8 V intelligent vision sensor with tiny convolutional neural network and programmable weights using mixed-mode processing-in-sensor technique for image classification[J]. IEEE Journal of Solid-State Circuits, 2023, 58(11): 3266-3274. [9] NURVITADHI E, SHEFFIELD D, SIM J, et al. Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC[C]// 2016 International Conference on Field-Programmable Technology (FPT), Xi’an, China, 2016: 77-84. [10] REN J, JIANG X, YUAN J. Noise-resistant local binary pattern with an embedded error-correction mechanism[J]. IEEE Trans Image Process, 2013, 22(10): 4049-4060. [11] JEON D, DONG Q, KIM Y, et al. A 23-mW face recognition processor with mostly-read 5T memory in 40-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(6): 1628-1642. [12] BONG K, CHOI S, KIM C, et al. A low-power convolutional neural network face recognition processor and a CIS integrated with always-on face detector[J]. IEEE Journal of Solid-State Circuits, 2018, 53(1): 115-123. [13] LEFEBVRE M, MOREAU L, DEKIMPE R, et al. 7.7 A 0.2-to-3.6TOPS/W programmable convolutional imager SoC with in-sensor current-domain ternary-weighted MAC operations for feature extraction and region-of-interest detection[C]// 2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2021: 118-120. [14] SONG H, OH S, SALINAS J, et al. A 5.1ms low-latency face detection imager with in-memory charge-domain computing of machine-learning classifiers[C]// 2021 Symposium on VLSI Circuits, Kyoto, Japan, 2021: 1-2. [15] 刘力源, 冯鹏, 杨旭, 等. 智能视觉芯片[J]. 科学通报, 2023, 68(35): 4844-4861. [16] CHOI J, LEE S, SON Y, et al. Design of an always-on image sensor using an analog lightweight convolutional neural network[J]. Sensors, 2020, 20(11): 3101. [17] KIM J H, KIM C, KIM K, et al. An ultra-low-power analog-digital hybrid CNN face recognition processor integrated with a CIS for always-on mobile devices[C]// 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019: 1-5. [18] HUANG G B, MATTAR M A, BERG T L, et al. Labeled faces in the wild: a database forStudying face recognition in unconstrained environments[C]// Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marburg, DE, Germany, 2008. [19] KAGGLE. Oregon wildlife image collection[EB/OL]. (2019-12-22)[2024-12-11]. https://www.kaggle.com/virtualdvid/oregon-wildlife. [20] GRUEV V, YANG Z, VAN DER SPIEGEL J, et al. Two transistor current mode active pixel sensor[C]// 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 2007: 2846-2849. [21] PHILLIPS P J, MOON H, RIZVI S A, et al. The FERET evaluation methodology for face-recognition algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090-1104. 虞致国(1979—),男,江西万年人,博士,教授,主要研究方向为数模混合芯片设计、高性能处理器设计、集成电路设计自动化(EDA)算法等。
|