[1] 杜义浩, 曹添福, 范强, 等. 基于GA-BLS方法的手势识别研究[J]. 计量学报, 2024, 45(1): 121-127. [2] LU Y C, LI Z H, KIM T T. HGRP: a 181-μW real-time hand gesture recognition processor based on bi-directional convolution and iteration-free feature clustering[J]. IEEE Journal of Solid-State Circuits, 2024, 59(6): 1962-1975. [3] PARK J, JANG J, LEE G, et al. A time domain artificial intelligence radar system using 33-GHz direct sampling for hand gesture recognition[J]. IEEE Journal of Solid-State Circuits, 2020, 55(4): 879-888. [4] IBRAHIM E A, VAN DEN DOOL B, DE S, et al. Dilate-invariant temporal convolutional network for real-time edge applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(3): 1210-1220. [5] PRZYBYLA R J, TANG H Y, GUEDES A, et al. 3D ultrasonic rangefinder on a chip[J]. IEEE Journal of Solid-State Circuits, 2015, 50(1): 320-334. [6] MA X R, ZHAO Y N, ZHANG L, et al. Practical device-free gesture recognition using WiFi signals based on metalearning[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 228-237. [7] ABDELNASSER H, HARRAS K, YOUSSEF M. A ubiquitous WiFi-based fine-grained gesture recognition system[J]. IEEE Transactions on Mobile Computing, 2019, 18(11): 2474-2487. [8] OUYANG Z, SRINIVASAN K. Mudra: user-friendly fine-grained gesture recognition using WiFi signals[C]// Proceedings of the 12th International on Conference on Emerging Networking Experiments and Technologies, Irvine CA, USA, 2016: 83-96. [9] CHOI S, LEE J S, LEE K, et al. A 9.02 mW CNN-stereo-based real-time 3D hand-gesture recognition processor for smart mobile devices[C]//2018 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018: 220-222. [10] SHI C, YANG J, HAN Y, et al. A 1000 fps vision chip based on a dynamically reconfigurable hybrid architecture comprising a PE array processor and self-organizing map neural network[J]. IEEE Journal of Solid-State Circuits, 2014, 49(9): 2067-2082. [11] LE V L, YOO T, KIM J E, et al. A 137-μW 1.78-mm2 30-frames/s real-time gesture recognition SoC for smart devices[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(8): 1909-1919. [12] LE V L, YOO T, KIM J E, et al. A 213.7-μW gesture sensing system-on-chip with self-adaptive motion detection and noise-tolerant outermost-edge-based feature extraction in 65 nm[J]. IEEE Solid-State Circuits Letters, 2019, 2(9): 123-126. [13] 解迎刚, 王全. 基于视觉的动态手势识别研究综述[J]. 计算机工程与应用, 2021, 57(22): 68-77. [14] ZIMMERMANN C, BROX T. Learning to estimate 3D hand pose from single RGB images[C]//2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 4913-4921. [15] MOON G, YU S I, WEN H, et al. InterHand2.6M: a dataset and baseline for 3D interacting hand pose estimation from a single RGB image[C]// Computer Vision – ECCV 2020, Glasgow, UK, 2020: 548-564. [16] 彭玉青, 赵晓松, 陶慧芳, 等. 复杂背景下基于深度学习的手势识别[J]. 机器人, 2019, 41(4): 534-542. [17] KIM J H, KIM C, KIM K, et al. An ultra-low-power analog-digital hybrid CNN face recognition processor integrated with a CIS for always-on mobile devices[C]//2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019: 1-5. [18] WANG C C, DING Y C, CHIU C T, et al. Real-time block-based embedded CNN for gesture classification on an FPGA[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(10): 4182-4193. 虞致国(1979—),男,江西万年人,博士,教授,主要研究方向为数模混合芯片设计、高性能处理器设计、集成电路设计自动化(EDA)算法等。
|