中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2023, Vol. 23 ›› Issue (6): 060206 . doi: 10.16257/j.cnki.1681-1070.2023.0081

• 封装、组装与测试 • 上一篇    下一篇

基于深度学习的电子元件焊点缺陷检测方法*

刘玉龙1,2;吕权权1,2;吴浩1,2;单建华1,2   

  1. 1. 特种重载机器人安徽省重点实验室,安徽 马鞍山 243032;2. 安徽工业大学机械工程学院,安徽 马鞍山 243032
  • 收稿日期:2022-10-02 出版日期:2023-06-26 发布日期:2023-05-06
  • 作者简介:刘玉龙(1998—),男,安徽合肥人,硕士,主要研究方向为深度学习与缺陷检测。

Solder JointDetection Method for Electronic Components Based on Deep Learning

LIU Yulong1,2, LYU Quanquan1,2, WU Hao1,2, SHAN Jianhua1,2   

  1. 1. Anhui Province Key Laboratory of Special Heavy Load Robot, Maanshan 243032, China;2.School of Mechanical Engineering, Anhui University of Technology, Maanshan 243002, China
  • Received:2022-10-02 Online:2023-06-26 Published:2023-05-06

摘要: 提出一种用于训练掩模区域卷积神经网络(Mask R-CNN)的半自动生成焊点图像掩模的方法。由于传统的通过人工标注获取掩模的方法费时费力,提出了一种简便快捷的基于GrabCut获取图像掩模的方法。该方法由两个阶段组成,第一阶段为基于GrabCut的焊点图像分割,输出像素级分割结果,从而获得所输入图像掩模。第二阶段实现基于Mask R-CNN的焊点表面缺陷检测方法,可以实现对缺陷的定位、分类和分割。实验结果证实了该方法的有效性,在保证Mask R-CNN方法检测精度的前提下,能快速简单地获取训练Mask R-CNN所需的焊点掩模。

关键词: 缺陷检测, 深度学习, 焊点检测, 卷积神经网络

Abstract: A method of semi-automatic of solder joint image Mask generation for training mask region convolutional neural network (Mask R-CNN) is proposed. Because the traditional manual annotation method of obtaining mask is time-consuming and laborious, a simple and fast method of obtaining image mask based on GrabCut is proposed. The method consists of two stages. The first stage is the solder joint image segmentation based on GrabCut. The pixel level segmentation results are output to obtain the input image mask. In the second stage, the detection method of solder joint surface defects based on Mask R-CNN is implemented, which can realize the location, classification and segmentation of defects. Experimental results confirm the effectiveness of the proposed method. Under the premise of ensuring the detection accuracy of Mask R-CNN method, the solder joint Mask required for training Mask R-CNN can be quickly and simply obtained.

Key words: defect detection, deep learning, solder joint inspection, convolutional neural network

中图分类号: