[1] TAO X, ZHANG D, MA W, et al. Automatic metallic surface defect detection and recognition with convolutional neural networks[J]. Applied Sciences, 2018, 8(9): 1575. [2] TSAI D M, HSIAO B. Automatic surface inspection using wavelet reconstruction[J]. Pattern Recognition, 2001, 34(6): 1285-1305. [3] TSAI D M, HSIEH C Y. Automated surface inspection for directional textures[J]. Image and Vision Computing, 1999, 18(1): 49-62. [4] WU H, ZHANG X M, XIE H W, et al. Classification of solder joint using feature selection based on Bayes and support vector machine[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(3): 516-522. [5] TSAI T N. Development of a soldering quality classifier system using a hybrid data mining approach[J]. Expert Systems with Applications, 2012, 39(5): 5727-5738. [6] ACCIANI G, BRUNETTI G, FORNARELLI G. Application of neural networks in optical inspection and classification of solder joints in surface mount technology[J]. IEEE Transactions on Industrial Informatics, 2006, 2(3): 200-209. [7] 黄汉成,赵卫东,夏冰.基于深度学习的指针缺陷检测研究[J].安徽工业大学学报(自然科学版),2019,36(4):375-381. [8] 郑建聪,谢麒麟,方挺,等. 一种基于特征点的管材表面缺陷视觉检测方法[J]. 安徽工业大学学报(自然科学版),2022,39(1):21-24. [9] CAI N, CEN G D, WU J X, et al. SMT solder joint inspection via a novel cascaded convolutional neural network[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(4): 670-677. [10] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [11] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//2017 IEEE Transactions on Pattern Analysis and Machine Intelligence, Puerto Rico, IEEE, 2017: 2980-2988. [12] WU H, GAO W B, XU X R. Solder joint recognition using Mask R-CNN method[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(3): 525-530. [13]王联君,王静秋. 基于GrabCut的磨粒图像分割方法研究[J]. 机械制造与自动化,2019,48(2):127-130,137. [14] BOYKOV Y Y, JOLLY M P. Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images[C]// 2001 Proceedings, Eighth IEEE International Conference on Computer Vision, Vancouver, British Columbia, Canada, IEEE, 2001: 105-112. [15] GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1440-1448. [16] 汪鹏宇,瞿栋,黄允,等. 基于Faster R-CNN的PCB缺陷检测研究[J]. 计量与测试技术,2021,48(10):9-11. [17] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 770-778. [18] MANNING C D, RAGHAVAN P, SCHüTZE H, Introduction to information retrieval[J]. Natural Language Engineering, 2010, 16(1): 100-103. [19] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. [20] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651. [21] SINGH A, SHA J, NARAYAN K S, et al. Bigbird: A large-scale 3D database of object instances[C]// 2014 IEEE international conference on robotics and automation (ICRA), Hong Kong, China, IEEE, 2014: 509-516. [22] WU H, XU X R. Solder joint inspection using eigensolder features[J]. Soldering and Surface Mount Technology, 2018,30(4): 227-232. [23] WU H. Solder joint defect classification based on ensemble learning[J]. Soldering and Surface Mount Technology, 2017, 29(3): 164-170.
|