[1] TU K N. Reliability challenges in 3D IC packaging technology[J]. Microelectronics and Reliability, 2011, 51(3): 517-523. [2] 曹立强,侯峰泽,王启东,等. 先进封装技术的发展与机遇[J]. 前瞻科技,2022,1(3):101-114. [3] AHN B. Emerging interconnection technology and Pb-free solder materials for advanced microelectronic packaging[J]. Metals, 2021, 11(12): 1941-1943. [4] LEE C C, LIN Y M, LIU H C, et al. Reliability evaluation of ultra thin 3D-IC package under the coupling load effects of the manufacturing process and temperature cycling test[J]. Microelectronic Engineering, 2021(244-246): 111572. [5] 朱健,吴璟,贾世星,等. 基于 MEMS 圆片级封装/通孔互联技术的 SIP 技术[J]. 固体电子学研究与进展,2011,31(2):213. [6] WAKEEL S, HASEEB A, AMALINA M A, et al. Investigation into chemistry and performance of no-clean flux in fine pitch flip-chip package[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022(1): 12-16. [7] PEEK S, GUPTA V, SELLERS J, et al. Fabrication and flip-chip assembly processes for cryogenic applications using indium-indium and SAC-indium bump connections on flexible interconnects[J]. Journal of Materials Science: Materials in Electronics, 2021(13): 102-105. [8] 郭建军. 化学镀和电镀镍合金与无铅焊料的反应润湿行为[D]. 北京:中国科学院研究生院,2007. [9] GAO H, WEI F X, SUI Y W, et al. Effect of nickel (Ni) on thegrowth rate of Cu6Sn5 intermetallic compounds between Sn-Cu-Bi solder and Cu substrate[J]. Journal of Materials Science-Materials in Electronics, 2019, 30(3): 2186-2191. [10] SUH J O, TU K N, WU A T, et al. Preferred orientation relationships with large misfit interfaces between Ni3Sn4 and Ni in reactive wetting of eutectic SnPb on Ni[J]. Journal of Applied Physic, 2011, 109(12): 123-127. [11] 尹立孟,张新平. 无铅微互连焊点力学行为尺寸效应的试验及数值模拟[J]. 机械工程学报,2010,46 (2):55-60. [12] CHANG Y W, HU C C, PENG H Y, et al. A new failure mechanism of electromigration by surface diffusion of Sn on Ni and Cu metallization in microbumps[J]. Scientific Reports, 2018,12(1): 5935. [13] LI W Y, YIN L M, WEI S, et al. Size effect of solder joint interconnection on lead-free microelectronic packaging[J]. Journal of Chongqing University of Science and Technology, 2011, 13(6): 130-133. [14] ZHOU M, LI X P, MA X, et al. Early interfacial reaction and undercooling solidification behavior of Sn3.5Ag /Cu system[J]. Acta Metallurgica Sinica(Chinese Edition), 2010, 46(5): 569-574. [15] 贾忠中. BGA球窝焊点切片特征与形成机理及控制[J]. 电子工艺技术,2017,38(4):245-248. [16] XIONG M Y, ZHANG L. Interface reaction and intermetallic compound growth behavior of Sn-Ag-Cu lead-free solder joints on different substrates in electronic packaging[J]. Journal of Materials Science, 2019, 54(2): 1741-1768. [17] MA H R, KUNWAR A, HUANG R, et al. Size effect on IMC growth induced by Cu concentration gradient and pinning of Ag3Sn particles during multiple reflows[J]. Intermetallics, 2017, 90: 90-96. [18] TU K N, LIU Y X. Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology[J]. Materials Science and Engineering R-Reports: A Review Journal, 2019, 136: 1-12. [19] DEPIVER J A, MALLIK S, AMALU E H. Effective solder for improved thermo-mechanical reliability of solder joints in a ball grid array (BGA) soldered on printed circuit board (PCB)[J]. Journal of Electronic Materials, 2021, 50(1): 263-282. [20] CHENG J X, HU X W, LI S. Effects of the surface roughness on wetting properties and interfacial reactions between SAC305 solder and Cu substrate with Ni-W-P coating[J]. Journal of Materials Science-Materials in Electronics, 2020, 31(18): 15086-15096. [21] GAO L Y, ZHANG H, LI C F, et al. Mechanism of improved electromigration reliability using Fe-Ni UBM in wafer level package[J]. Journal of Materials Science and Technology, 2018, 34(8): 1305-1314. [22] LI J, WANG D, DUAN J, et al. Structural design and control of a small-MRF damper under 50 N soft-landing applications[J]. IEEE Transactions on Industrial Informatics, 2015, 11(3): 612-619. [23] LI J, ZHANG X, ZHOU C, et al. New applications of an automated system for high-power LEDs[J]. IEEE ASME Transactions on Mechatronics, 2016, 21(2): 1035-1042. [24] LI J H, XIA Y, WANG W, et al. Dipping process characteristics based on image processing of pictures captured by high-speed cameras[J]. Nano-Micro Letters, 2015, 7(1): 1-11. [25] 刘晓兰,赵飞.晶圆级高均匀性电镀工艺研究[J]. 电子工艺技术,2019,40 (5):268-270,274. [26] 黄海军,周敏波,吴雪,等.芯片互连用粒径双峰分布纳米铜膏的低温无压烧结纳连接机理和接头可靠性[J]. 机械工程学报,2022,58(2):58-65. [27] 张潇睿. Cu-Sn-Cu互连微凸点热压键合研究[J]. 电子与封装,2021,21(9):090203. [28] 高昆,黎映相,齐乐华,等. 参数对均匀微滴打印多尺寸锡焊料凸点阵列的影响[J]. 中国机械工程,2021,32(19):2367-2373. [29] 陈聪,李杰,姜理利,等. 用于不同体态芯片互连的凸点制备及性能表征[J]. 固体电子学研究与进展,2021,41(2):87-92. [30] 冯晓宇,孙健,王成刚,等. 7.5μm小间距铟凸点阵列制备的研究[J]. 激光与红外,2021,51(6):782-786. [31] 肖汉武.芯片凸点技术发展动态[J].电子产品世界,2001(1):78-79. [32] HAN Z J, LI X X, HU Y F, et al. Stud bump bonding technology of flip chip[J]. Electro-Mechanical Engineering, 2012, 28(3): 58-61. [33] 程鹏飞. LF2000锡膏印刷性能及回流焊后空洞的研究[D]. 哈尔滨:哈尔滨工业大学,2010. [34] 郭德燕,宋佳佳,蔡亮,等.熔体混合金锡共晶合金非规则共晶组织的形成[J]. 稀有金属,2013,37(2): 224-229. [35] CHEN C, HOU F Z, LIU F M, et al. Thermo-mechanical reliability analysis of a RF SIP module based on LTCC substrate[J]. Microelectronics Reliability, 2017, 79: 38-47. [36] 林丹华. PBGA封装热可靠性分析及结构优化[D]. 长沙:中南大学,2008. [37] 张景超. 激光全息检测印刷电路板钎焊缺陷[J]. 应用激光,2000,20(4):182-184. [38] OSTMANN A. Electroless nickel bumping [Z]. [39] 罗驰,练东. 电镀技术在凸点制备工艺中的应用[J]. 微电子学,2006,36(4):467-472. [40] YU D Q, ZHAO J, WANG L. Improvement on the microstructure stability, mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements[J]. Journal of Alloys and Compounds, 2004, 376: 170-175. [41] WEI K, LIN B, TAI J. Copper pillar bump technology progress overview[C]// Proceedings of 2011 IEEE International Conference on Electronic Packaging Technology and High Density Packaging, Shanghai, China, 2011. [42] 吕镖,汪笑鹤,胡振峰,等. 不同电流密度下阴极移动对电镀镍层性能的影响[J]. 电镀与涂饰,2013,32(10):5-9. [43] 李福泉,王春青,杜淼,等.SnPb钎料与Au/Ni/Cu焊盘反应过程中Au的分布[J]. 焊接学报,2006,27(1):53-56,115-116. [44] OTIABA K C, BHATTI R, EKERE N, et al. Finite element analysis of the effect of silver content for Sn-Ag-Cu alloy compositions on thermal cycling reliability of solder die attach[J]. Engineering Failure Analysis, 2013, 28(2): 192-207. [45] LAURILA T, VUORINEN V, MATTILA T, et al. Analysis of the redeposition of AuSn4 on NiAu contact pads when using SnPbAg, SnAg and SnAgCu solders[J]. Journal of Electronic Materials, 2005, 1(34): 03-111. [46] LABIE R, RUYTHOOREN W, HUMBEECK J V. Solid state diffusion in Cu-Sn and Ni-Sn diffusion couples with flip-chip scale dimensions[J]. Intermetallics, 2007, 15: 396-403. [47] 林小芹,朱大鹏,罗乐. 微尺寸SnAg凸点的制备技术及其互连可靠性[J]. 半导体学报,2008,29(1):168-173. [48] GORLICH J, BAITHER D, SCHMITZ G. Reaction kinetics of Ni/Sn soldering reaction-science direct[J]. Acta Materialia, 2010, 58(9): 3187-3197. [49] TIAN Y, HANG C, WANG C, et al. Effects of bump size on deformation and fracture behavior of Sn3.0Ag0.5Cu/Cu solder joints during shear testing[J]. Materials Science and Engineering A, 2011, 529: 468-478. [50] CHUANG H Y, YU J J, KUO M S, et al. Elimination of voids in reactions between Ni and Sn: A novel effect of silver[J]. Scripta Materialia, 2012, 66: 171-174. [51] CHUANG H Y, YANG T L, KUO M S, at al. Critical concerns in soldering reactions arising from space Confinement in 3-D IC packages[J]. Proceedings of 2012 IEEE Transactions on Device and Materials Reliability, 2012, 12(2): 233-240. [52] HUANG Y S, HSIAO H Y, CHEN C, et al. The effect of a concentration gradient on interfacial reactions in microbumps of Ni/SnAg/Cu during liquid-state soldering[J]. Scripta Materialia, 2012, 66(10): 741-744. [53] LIANG Y C, CHEN C. Microstructure evolution in a sandwich structure of Ni/SnAg/Ni microbump during reflow[C]// Proceedings of 2012 IEEE International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, China, 2012: 423-426. [54] 陈雷达. 电迁移作用下无铅焊点中的交互作用及界面反应研究[D]. 大连:大连理工大学,2012. [55] YU J J, YANG C A, LIN Y F, et al. Optimal Ag addition for the elimination of voids in Ni/SnAg/Ni micro joints for 3D IC applications[J]. Journal of Alloys and Compounds, 2015, 629: 16-21. [56] YANG C L, REN S R, ZHANG X D, et al. Effect of Sn surface diffusion on growth behaviors of intermetallic compounds in Cu/Ni/SnAg microbμmps[J]. Materials Characterization, 2020, 159: 36-41. [57] CAI J, WANG J Q, WANG Q. Experimental and computational investigation of low temperature Cu-Sn solid-state-diffusion bonding for 3D integration[J]. Microelectronic Engineering, 2021, 236: 111479. [58] 田飞飞,刘清君,李勇. Sn-37Pb焊球与Ni/NiP UBM界面反应特性研究[J]. 固体电子学研究与进展, 2020,40(2):154-158. [59] LIN K, WANG J, YANG C L, et al. Growth behavior of tin whisker and hillock on Cu/Ni/SnAg micro-bumps under high temperature and hμmidity storage[J]. Materials Letters, 2021, 9: 100060. [60] MA Y Y, LUAN J E, GOH K Y, et al. Finite element analysis of thermal cycling reliability of an extra large thermally enhanced flip chip BGA package with rotated die[C]// 2008 10th Electronics Packaging Technology Conference, Singapore, 2008: 709-715. [61] 叶瑞乾,郑鹏,王磊,等. 基于白光三角法的凸点封装高度测量仿真研究[J]. 光学与光电技术,2022,20(1):43-49. [62] 周敏波,赵星飞,陈明强,等. 电子封装跨尺度凸点结构Sn3.0Ag0.5Cu/Cu微互连焊点界面IMC生长与演化及力学行为的尺寸效应[J]. 机械工程学报,2022,58(2):259-268. [63] 王健,万里兮,侯峰泽,等. 微波芯片倒装金凸点热疲劳可靠性分析及优化[J]. 半导体技术,2018, 43(7):555-560. [64] 王梦雅,丁涛杰,顾林. 面向信息处理应用的异构集成微系统综述[J]. 电子与封装,2021,21(10):100102. [65] 张墅野,李振锋,何鹏. 微系统三维异质异构集成研究进展[J]. 电子与封装,2021,21(10):100106.
|