[1] CZEPL N, DEUTSCHMANN B, MICHALOWSKA-FORSYTH A. Influence of ionizing radiation on the conducted electromagnetic emission of integrated circuits[J]. Microelectronics Reliability, 2021, 126: 114335. [2] HUBERT G, ARTOLA L, REGIS D. Impact of scaling on the soft error sensitivity of bulk, FDSOI and FinFET technologies due to atmospheric radiation[J]. Integration, 2015, 50: 39-47. [3] 陶伟, 魏轶聃, 刘国柱, 等. FinFET工艺器件总剂量和单粒子效应研究进展[J]. 中国电子科学研究院学报, 2022, 17(3): 270-281. [4] RATHOD S S, SAXENA A K, DASGUPATA S. Study of quantum and classical transport in 25 nm omega radiation: 3D simulation study [J]. Journal of Active & Passive Electronic Devices, 2012, 7(1-2): 95-123. [5] 卓青青. SOI MOS器件辐射效应的机理与可靠性研究[D]. 西安: 西安电子科技大学, 2015. [6] WANG Y, WANG L X, GUO M, et al. Research of single event burnout in a high-performance radiation-hardened SOI lateral power MOSFET[J]. Microelectronics Reliability, 2022, 129: 114475. [7] DEBENEDICTIS E P, BADAROGLU M, CHEN A, et al. Sustaining Moore’s law with 3D chips[J]. Computer, 2017, 50(8): 69-73. [8] UMEZAWA H. Recent advances in diamond power semiconductor devices[J]. Materials Science in Semiconductor Processing, 2018, 78: 147-156. [9] CHENG Z, MU F W, YATES L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8376-8384. [10] NEUMAIER D, PINDL S, LEMME M C. Integrating graphene into semiconductor fabrication lines[J]. Nature Materials, 2019, 18(6): 525-529. [11] OLABI A G, ABDELKAREEM M A, WILBERFORCE T, et al. Application of graphene in energy storage device–A review[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110026. [12] KUNG Y C, HOSSEINI N, DUMCENCO D, et al. Air and water-stable n-type doping and encapsulation of flexible MoS2 devices with SU8[J]. Advanced Electronic Materials, 2019, 5(1): 1800492. [13] NAWZ T, SAFDAR A, HUSSAIN M, et al. Graphene to advanced MoS2: a review of structure, synthesis, and optoelectronic device application[J]. Crystals, 2020, 10(10): 902. [14] CAO Q. Carbon nanotube transistor technology for More-Moore scaling[J]. Nano Research, 2021, 14(9): 3051-3069. [15] QIU S, WU K J, GAO B, et al. Single-walled carbon nanotubes: solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices[J]. Advanced Materials, 2019, 31(9): 1800750. [16] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58. [17] QIU C, ZHANG Z, XIAO M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths[J]. Science, 2017, 355(6322): 271-276. [18] ZHANG P P, QIU C G, ZHANG Z Y, et al. Performance projections for ballistic carbon nanotube FinFET at circuit level[J]. Nano Research, 2016(6): 1785-1794. [19] ZHU M, XIAO H, YAN G, et al. Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates[J]. Nature Electronics, 2020(10): 622-629. [20] ZHU M G, LU P, WANG X, et al. Ultra-strong comprehensive radiation effect tolerance in carbon nanotube electronics[J]. Small, 2023, 19(1): 2204537. [21] BUSHMAKER A W, WALKER D, MANN C J, et al. Single event effects in carbon nanotube-based field effect transistors under energetic particle radiation[J]. IEEE Transactions on Nuclear Science, 2014, 61(6): 2839-2846. [22] YOTA J, SHEN H, RAMANATHAN R. Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal-insulator-metal capacitor dielectric for GaAs HBT technology[J]. Journal of Vacuum Science & Technology A, 2013, 31(1): 01A134. [23] ROBERTSON J, WALLACE R M. High-K materials and metal gates for CMOS applications[J]. Materials Science and Engineering: R: Reports, 2015, 88: 1-41.
|