[1] SCHIERHOLZ C M, SCHARFF K, SCHUSTER C. Evaluation of neural networks to predict target impedance violations of power delivery networks[C]//2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), Montreal, QC, Canada, 2019: 1-3. [2] ZHANG L, JUANG J, KIGURADZE Z, et al. Fast impedance prediction for power distribution network using deep learning[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2022, 35(2): e2956. [3] LU C H, TSENG L Y, CHANG S C, et al. PIPPON: improve impedance prediction of power distribution network using pole proposal network[C]//2023 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMC+SIPI), Grand Rapids, MI, USA, 2023: 705-711. [4] LAI J P, LIN Y L, LIN H C, et al. Tree-based machine learning models with optuna in predicting impedance values for circuit analysis[J]. Micromachines, 2023, 14(2): 265. [5] 李原, 李燕君, 刘进超, 等. 基于改进Res-UNet网络的钢铁表面缺陷图像分割研究[J]. 电子与信息学报, 2022, 44(5): 1513-1520. [6] 殷晓航, 王永才, 李德英. 基于U-Net结构改进的医学影像分割技术综述[J]. 软件学报, 2021, 32(2): 519-550. [7] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Munich, Germany, 2015. [8] 梁栋,李英俊,张少杰.融合改进ResNet-14和RS-Unet模型的混凝土桥梁裂缝识别[J].北京交通大学学报,2023,47(3):10-18. [8] 梁栋, 李英俊, 张少杰. 融合改进ResNet-14和RS-Unet模型的混凝土桥梁裂缝识别[J]. 北京交通大学学报, 2023, 47(3): 10-18. [9] 雷禹, 冷祥光, 周晓艳, 等. 基于改进ResNet网络的复数SAR图像舰船目标识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3652-3660. [10] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 770-778. [11] 侯克鹏, 包广拓, 孙华芬. SSA-MLP模型在岩质边坡稳定性预测中的应用[J]. 安全与环境学报, 2024, 24(5): 1795-1803. [12] 胡宏宇, 郜天柱, 谷海涛. 基于MLP的海上无人跨域协同效能评估系统的设计与实现[J]. 系统仿真学报, 2024, 36(11): 2542-2551. [13] EROKHINA O V, BORISENKO B B, MARTISHIN I D, et al. Analysis of the multilayer perceptron parameters impact on the quality of network attacks identification[C]//2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO, Kaliningrad, Russia, 2021: 1-6. [14] 肖扬, 周忠元, 王海春, 等. 基于全波仿真和去嵌入测试相结合的ARM芯片PDN阻抗提取方法[J]. 东南大学学报(自然科学版), 2024, 54(5): 1283-1289. [15] FRIEDRICH M, LEONE M. Boundary-element method for the calculation of port inductances in parallel-plane structures[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(6): 1439-1447. [16] ZHANG L, JUANG J, KIGURADZE Z, et al. Efficient DC and AC impedance calculation for arbitrary-shape and multilayer PDN using boundary integration[J]. IEEE Transactions on Signal and Power Integrity, 2022, 1: 1-11. [17] 刘敏毅, 崔博文, 王宇坤, 等. 基于注意力机制的Transformer模型预测PM2.5浓度[J/OL]. 环境科学, 2024, 45(12): 213-222. [18] 赵陆阳, 刘长良, 刘卫亮, 等. 基于CBAM-DSC-UNet模型的时空风速预测算法[J]. 太阳能学报, 2024, 45(10): 497-505. [19] 黄泽, 毕贵红, 谢旭, 等. 基于MBI-PBI-ResNet的超短期光伏功率预测[J]. 电力系统保护与控制, 2024, 52(2): 165-176. [20] 徐小明, 纪萍, 朱国灵, 等. 基于电源分配网络仿真确定封装电容的方法[J]. 电子与封装, 2023, 23(7): 070204. |