[1] 赵瑾, 于大全, 秦飞. 面向Chiplet集成的三维互连硅桥技术[J]. 电子与封装, 2024, 24(6): 060101. [2] CHANG Y H, LIN Y M, LEE C Y, et al. Through glass via (TGV) copper metallization and its microstructure modification[J]. Journal of Materials Research and Technology, 2024, 31: 1008-1016. [3] GONG Y P, KOU Y G, YUE Q, et al. The application of thermomechanically coupled phase-field models in electronic packaging interconnect structures[J]. International Communications in Heat and Mass Transfer, 2024, 159: 108033. [4] DAS SHARMA D, MAHAJAN R V. Advanced packaging of Chiplets for future computing needs[J]. Nature Electronics, 2024, 7(6): 425-427. [5] KIM H, HWANG J Y, KIM S E, et al. Thermomechanical challenges of 2.5-D packaging: a review of warpage and interconnect reliability[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(10): 1624-1641. [6] LAU J H. Recent advances and trends in advanced packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(2): 228-252. [7] SUKUMARAN V, KUMAR G, RAMACHANDRAN K, et al. Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(5): 786-795. [8] LI X C, JIA X F, KIM J W, et al. Die-embedded glass interposer with minimum warpage for 5G/6G applications[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023. [9] WATANABE A O, TEHRANI B K, OGAWA T, et al. Ultralow-loss substrate-integrated waveguides in glass-based substrates for millimeter-wave applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(3): 531-533. [10] LAI Y Y, PAN K, PARK S. Thermo-mechanical reliability of glass substrate and through glass vias (TGV): a comprehensive review[J]. Microelectronics Reliability, 2024, 161: 115477. [11] 谢迪, 李浩, 王从香, 等. 基于TGV工艺的三维集成封装技术研究[J]. 电子与封装, 2021, 21(7): 070203. [12] 陈力, 杨晓锋, 于大全. 玻璃通孔技术研究进展[J]. 电子与封装, 2021, 21(4): 040101. 13] 陈祎, 岳琨, 吕复强. 封装技术在5G时代的创新与应用[J]. 电子与封装, 2024, 24(9): 090207. [14] 张墅野, 邵建航, 何鹏. 封装技术在5G时代的创新与应用[J]. 微电子学与计算机, 2023, 40(11): 9-21. [15] USAMI K, ISHIJIMA T, TOYODA H. Rapid plasma treatment of polyimide for improved adhesive and durable copper film deposition[J]. Thin Solid Films, 2012, 521: 22-26. [16] LIU L, LI W, SUN H, et al. Effects of Ti target purity and microstructure on deposition rate, microstructure and properties of Ti films[J]. Materials (Basel), 2022, 15(7): 2661. [17] WU H, CHEN Z Y, YI L, et al. Note on the energy transport in capacitively coupled plasmas[J]. Plasma Sources Science and Technology, 2022, 31(4): 047001. [18] LI Y P, LEI M K. Nanotexturing and wettability ageing of polypropylene surfaces modified by oxygen capacitively coupled radio frequency plasma[J]. Journal of Materials Science & Technology, 2014, 30(10): 965-972. [19] WANG E Z, SONG Y T, SHANG L L, et al. Plasma surface pretreatment to improve interfacial adhesion strengths of sputtered Cu on polyimide film[J]. Surface Topography: Metrology and Properties, 2022, 10(4): 045005. [20] SUNG D, WEN L, TAK H, et al. Investigation of SiO2 etch characteristics by C6F6/Ar/O2 plasmas generated using inductively coupled plasma and capacitively coupled plasma[J]. Materials (Basel), 2022, 15(4): 1300. [21] 闫伟伟, 朱泽力, 李景明. 封装用玻璃基板的热应力翘曲研究[J]. 电子与封装, 2024, 24(1): 010201. [22] 赵瑾, 于大全, 秦飞. 玻璃基板技术研究进展[J]. 电子与封装, 2025, 25(7): 070110. [23] 赵泉露, 赵静毅, 丁善军, 等. 降低玻璃基板TGV应力的无机缓冲层方法与仿真分析[J]. 电子与封装, 2025, 25(7): 070108. [24] OUYANG F Y, YANG K H, CHANG L P. Effect of film thickness and Ti interlayer on structure and properties of nanotwinned Cu thin films[J]. Surface and Coatings Technology, 2018, 350: 848-856. [25] HE Z S, MA Z N, LI Z Y, et al. Strain modulation of microstructure, magnetic domains, and magnetic properties of Ti/Fe/Ni81Fe19/Fe/Ti multilayer thin films[J]. Coatings, 2023, 13(2): 363.
  |