电子与封装 ›› 2021, Vol. 21 ›› Issue (3): 030401 . doi: 10.16257/j.cnki.1681-1070.2021.0302
徐春燕;南海燕;肖少庆;顾晓峰
收稿日期:
2020-07-06
出版日期:
2021-03-23
发布日期:
2020-09-22
作者简介:
徐春燕(1994—),女,江苏淮安人,硕士,研究方向为二维半导体材料的大面积制备及其光电器件性能的调控。
XU Chunyan, NAN Haiyan, XIAO Shaoqing, GU Xiaofeng
Received:
2020-07-06
Online:
2021-03-23
Published:
2020-09-22
摘要: 近年来,二维半导体材料因其独特的晶体结构和优良的电子、光电特性吸引了众多科研人员的关注。利用这些材料作为有源沟道,制备出了许多新颖的器件结构,性能较传统器件有很大的提升。在各种器件应用中,基于二维材料的光电探测器由于能够实现红外及太赫兹波段的光探测,得到了最为广泛的研究。综述了近年来二维材料在光电器件领域的应用,介绍了光电探测器的主要参数,从电极制备、异质结构筑、量子点和分子掺杂、表面等离激元耦合以及界面屏蔽5方面介绍了目前在二维材料中调控光电性能的方法,对已有方法进行了总结,并且对未来的发展进行了讨论。
中图分类号:
徐春燕, 南海燕, 肖少庆, 顾晓峰. 基于二维半导体材料光电器件的研究进展*[J]. 电子与封装, 2021, 21(3): 030401 .
XU Chunyan, NAN Haiyan, XIAO Shaoqing, GU Xiaofeng. Research Progress of PhotoelectricDevices Based on 2D Semiconductor Materials[J]. Electronics & Packaging, 2021, 21(3): 030401 .
[1] LI X M, TAO L, CHEN Z F, et al. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics[J]. Applied physics reviews, 2017, 4(2): 021306. [2] KIM J H, JEONG J H, KIM N, et al. Mechanical properties of two-dimensional materials and their applications[J]. Journal of Physics D, 2019, 52(8):083001. [3] CHEN X L, ZHOU Z S, DENG B C, et al. Electrically tunable physical properties of two-dimensional materials[J]. Nano Today, 2019, 27(1748-0132): 99-119. [4] YAN F G, WEI Z M, WEI X, et al. Toward High-performance Photodetectors Based on 2D Materials: Strategy on Methods[J]. Small Methods, 2018, 2(5): 1700349. [5] NOVOSELO K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac Fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. [6] KOSKI K J, CUI Y. The new skinny in two-dimensional nanomaterials[J]. ACS Nano, 2013, 7(5): 3739-3743. [7] LONG M S, WANG P, FANG H H, et al. Progress, Challenges, and Opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 2019, 29(19): 1803807. [8] BRITNELL L, RIBEIRO R M, ECKMANN A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314. [9] XIA F N, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907. [10] GUO Q S, POSPISCHIL A, BHUIYAN M, et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Letters, 2016, 16(7): 4648-4655. [11] CHEN X L, LU X B, DENG B C, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nature Communications, 2017, 8(1): 1672-1672. [12] AMANI M, REGAN E, BULLOCK J, et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys[J]. ACS Nano, 2017, 11(11): 11724-11731. [13] LONG M S, GAO A Y, WANG P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J]. Science Advances, 2017, 3(6): 1700589. [14] ZHANG Y Z, LIU T, MENG B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4(1): 1811. [15] HAN C, HU Z H, CARVALHO A, et al. Oxygen induced strong mobility modulation in few-layer black phosphorus[J]. 2d Materials, 2017, 4(2):021007. [16] LUO W G, CAO Y F, HU P G, et al. Gate tuning of high-performance InSe-based photodetectors using graphene electrodes[J]. Advanced Optical Materials, 2015, 3(10): 1418-1423. [17] CAO Y F, CAI K M, HU P G, et al. Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors[J]. Scientific Reports, 2015, 5(1): 8130-8130. [18] BUSCEMA M, GROENENDIJK D J, BLANTER S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6): 3347-3352. [19] HUO N J, KANG J, WEI Z M, et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors[J]. Advanced Functional Materials, 2014, 24(44): 7025-7031. [20] WANG X T, HUANG L, PENG Y T, et al. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p-n heterojunctions[J]. Nano Research, 2016, 9(2): 507-516. [21] ZHANG K N, ZHANG T N, CHENG G H, et al. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures[J]. ACS Nano, 2016, 10(3): 3852-3858. [22] WANG Y, ZHOU W X, HUANG, et al. Light induced double 'on' state anti-ambipolar behavior and self-driven photoswitching in p-WSe2/n-SnS2 heterostructures[J]. 2D Materials, 2017, 4(2): 025097. [23] HUO N J, KONSTANTATOS G. Recent Progress and Future Prospects of 2D-Based Photodetectors[J]. Advanced Materials, 2018, 30(51): 1801164. [24] WANG X T, CUI Y, LI T, et al. Recent Advances in the Functional 2D photonic and optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(3): 180127. [25] SARAN R, CURRY R J. Lead sulphide nanocrystal photodetector technologies[J]. Nature Photonics, 2016, 10(2): 81-92. [26] WANGYANG P H, GONG C H, RAO G F, et al. Recent advances in halide perovskite photodetectors based on different dimensional materials[J]. Advanced Optical Materials, 2018, 6(11): 1701302. [27] PAUL J T, SINGH A K, DONG Z, et al. Computational methods for 2D materials: discovery, property characterization, and application design[J]. Journal of Physics: Condensed Matter, 2017, 29(47): 473001. [28] WANG J L, FANG H H, WANG X D, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared[J]. Small, 2017, 13(35): 1700894. [29] HU S Q, ZHANG Q, LUO X G, et al. Au-InSe van der Waals Schottky junctions with ultralow reverse current and high photosensitivity[J]. Nanoscale, 2020, 12(6): 4094-4100. [30] PARK H Y, JUNG W S, KANG D H, et al. Extremely low contact resistance on graphene through n-type doping and edge contact design[J]. Advanced Materials, 2016, 28(5): 975-975. [31] CHUANG S, BATTAGLIA C, AZCATL A, et al. MoS2 P-type transistors and diodes enabled by high work function MoOx contacts[J]. Nano Letters, 2014, 14(3): 1337-1342. [32] JIN K, LI T S, CAI H B, et al. Transfer printing of metal electrodes for high performance InSe photodetectors[J]. Optics Communications, 2019, 436(0030-4018): 47-51. [33] LIU Y, GUO J, ZHU E B, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions.[J]. Nature, 2018, 557(7707): 696-700. [34] LIN Z Y, WANG J L, GUO X Y, et al. Interstitial copper-doped edge contact for n-type carrier transport in black phosphorus[J]. InfoMat, 2019, 1(2): 2567-3165. [35] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. [36] XU J, SHIM J, PARK J H, et al. MXene Electrode for the Integration of WSe2 and MoS2 field effect transistors[J]. Advanced Functional Materials, 2016, 26(29): 5328-5334. [37] YANG Y J, UMRAO S, LAI S, et al. Large-area highly conductive transparent two-dimensional Ti2CTx film[J]. Journal of Physical Chemistry Letters, 2017, 8(4): 859-865. [38] CHAUDHURI K, ALHABEB M, WANG Z X, et al. Highly broadband absorber using plasmonic titanium carbide (MXene)[J]. ACS Photonics, 2018, 5(3): 1115-1122. [39] YANG Y J, JEON J, PARK J H, et al. Plasmonic transition metal carbide electrodes for high-performance InSe photodetectors[J]. 2019, 13(8): 8804-8810. [40] OUYANG W X, CHEN J X, HE J H, et al. Improved photoelectric performance of UV photodetector based on ZnO nanoparticle-decorated BiOCl nanosheet arrays onto PDMS substrate: the heterojunction and Ti3C2Tx MXene conduction layer[J]. 2020, 6(6): 2000168. [41] AN X H, LIU F Z, JUNG Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 2013, 13(3): 909-916. [42] YANG S X, WANG C, ATACA C, et al. Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p-n vdW heterostructure[J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2533-2539. [43] NING X M, HUANG J L, LI L H, et al. Branched Bi2S3/TiO2 nano-heterostructure with enhanced photoelectric performance[J]. 2019, 6(12): 125029. [44] YU Z L, ZHAO Y Q, LIU B, et al. Breaking the anisotropy of α-CNH and improving the photoelectric performance by constructing van der Waals heterojunction[J]. Applied Surface Science, 2019, 497(0169-4332): 143787. [45] LIN S S, LU Y H, XU J, et al. High performance graphene/semiconductor van der Waals heterostructure optoelectronic devices[J]. Nano Energy, 2017, 40(17): 122-148. [46] XUE Y Z, ZHANG Y P, LIU Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors.[J]. ACS Nano, 2016, 10(1): 573-580. [47] ZHANG H B, ZHANG X J, LIU C, et al. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors[J]. ACS Nano, 2016, 10(5): 5113-5122. [48] ZHOU X, ZHOU N, LI C, et al. Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors[J]. 2D Materials, 2017, 4(2): 025048. [49] YANG T, LI X, WANG L M, et al. Broadband photodetection of 2D Bi2O2Se-MoSe2 heterostructure[J]. J Mater Sci, 2019, 54(24), 14742–14751. [50] CAO R, WANG H, GUO Z N, et al. Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity[J]. Advanced Optical Materials, 2019, 7(12): 1900020. [51] QI T L, GONG Y P, LI A L, et al. Interlayer Transition in a VdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors[J]. Advanced Functional Materials, 2020, 30(3):1905687. [52] KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. [53] SUN Z H, LIU Z K, LI J H, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Advanced Materials, 2012, 24(43): 5878-5883. [54] KUFER D, NIKITSKIY I, LASANTA T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Advanced Materials, 2015, 27(1): 176-180. [55] HU C, DONG D D, YANG X K, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors[J]. Advanced Functional Materials, 2017, 27(2): 1603605. [56] PENG M F, XIE X K, ZHENG H C, et al. PbS quantum dots/2D non-layered CdSSe nanosheets hybrid nanostructure for high-performance broadband photodetectors[J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43887-43895. [57] WU H L, SI H N, ZHANG Z H, et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector[J]. Advanced Science, 2018, 5(12): 1801219. [58] BERA K P, HAIDER G, HUANG Y T, et al. Graphene sandwich stable perovskite quantum-dot light-emissive ultrasensitive and ultrafast broadband vertical phototransistors[J]. ACS Nano, 2019, 13(11): 12540-12552. [59] CHEN X Q, LIU X L, WU B, et al. Improving the Performance of graphene phototransistors using a heterostructure as the light-absorbing layer[J]. Nano Letters, 2017, 17(10): 6391-6396. [60] YU S H, LEE Y, JANG S K, et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse[J]. ACS Nano, 2014, 8(8): 8285-8291. [61] JO S H, KANG D H, SHIM J, et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine(PPh3)-based n-doping technique[J]. Advanced Materials, 2016, 28(24): 4824–4831. [62] HUANG Y M, ZHENG W, QIU Y F, et al. Effects of organic molecules with different structures and absorption bandwidth on modulating photoresponse of MoS2 photodetector[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23362-23370. [63] CAI Y Q, ZHOU H B, ZHANG G, et al. Modulating carrier density and transport properties of MoS2 by organic molecular doping and defect engineering[J]. Chemistry of Materials, 2016, 28(23): 8611-8621. [64] HEO K, JO S H, SHIM J, et al. Stable and Reversible Triphenylphosphine-Based n-type doping technique for molybdenum disulfide (MoS2)[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32765-32772. [65] CHO Y, PARK J H, KIM M, et al. Impact of organic molecule-induced charge transfer on operating voltage control of both n-MoS2 and p-MoTe2 transistors[J]. Nano Letters, 2019, 19(4): 2456-2463. [66] KIM J, HEO K, KANG D H, et al. Rhenium diselenide (ReSe2) near-infrared photodetector: performance enhancement by selective p-doping technique[J]. Advanced Science, 2019, 6(21): 1901255. [67] MUELLER T, XIA F N, AVOURIS P, et al. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301. [68] ZHENG Z Q, ZHANG T M, YAO J, et al. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices[J]. Nanotechnology, 2016, 27(22): 225501. [69] PEREA-LOPEZ N, ELIAS A L, BERKDEMIR A, et al. Photosensor device based on few-layered WS2 films[J]. Advanced Functional Materials, 2013, 23(44):5511-5517. [70] LIU Y, CHENG R, LIAO L, et al. Plasmon resonance enhanced multicolour photodetection by graphene[J]. Nature Communications, 2011, 2(1): 579-579. [71] LIN J D, LI H, ZHANG H, et al. Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor[J]. Applied Physics Letters, 2013, 102(20): 203109. [72] WANG W Y, KLOTS A, PRASAI D, et al. Hot electron-based near-infrared photodetection using bilayer MoS2[J]. Nano Letters, 2015, 15(11): 7440-7444. [73] MIAO J S, HU W D, JING Y L, et al. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays[J]. Small, 2015, 11(20): 2392-2398. [74] ECHTERMEYER T J, MILANA S, SASSI U, et al. Surface plasmon polariton graphene photodetectors[J]. Nano Letters, 2016, 16(1): 8-20. [75] YU Y F, SUN Y, HU Z L, et al. Fast photoelectric conversion in the near-infrared enabled by plasmon-induced hot-electron transfer[J]. Advanced Materials, 2019, 31(43): 1903829. [76] LIU X, BAI Y F, XU J, et al. Robust amphiphobic few-layer black phosphorus nanosheet with improved stability[J]. Advanced Science, 2019, 6(23): 1901991. [77] TANG J P, XIAO W Z, WANG L L. Stability and electronic structure of two-dimensional arsenic phosphide monolayer[J]. Materials Science and Engineering B-advanced Functional Solid-state Materials, 2018, 228(0921-5107): 206-212. [78] WANG X Y, NAN H Y, DAI W, et al. Optical studies of the thermal stability of InSe nanosheets[J]. Applied Surface Science, 2019, 467-468(0169-4332): 860-867. [79] YAO J D, ZHENG Z Q, YANG G W, et al. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition[J]. Progress in Materials Science, 2019, 106(0079-6425): 100573. [80] YAO J D, ZHENG Z Q, YANG G W, et al. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm[J]. Journal of Materials Chemistry C, 2016, 4(33): 7831-7840. [81] ZHANG K N, ZHANG T N, CHENG G H, et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures[J]. ACS Nano, 2016, 10(3): 3852-3858. [82] EDMONDS M T, TADICH A, CARVALHO A, et al. Creating a Stable Oxide at the Surface of Black Phosphorus[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14557-14562. [83] BAKHTINOV A P, KOVALYUK Z D, SYDOR O N, et al. Formation of nanostructure on the surface of layered InSe semiconductor caused by oxidation under heating[J]. Physics of the Solid State, 2007, 49(8):1572-1578. [84] DOGANOV R A, OFARRELL E C, KOENIG S P, et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere[J]. Nature Communications, 2015, 6(1): 6647. [85] WANG D G, MENG J H, ZHANG X W, et al. Selective direct growth of atomic layered HfS2 on hexagonal boron nitride for high performance photodetectors[J]. Chemistry of Materials, 2018, 30(11): 3819-3826. [86] CHANG P H, LI C S, FU F Y, et al. Ultrasensitive photoresponsive devices based on graphene/BiI3 van der Waals epitaxial heterostructures[J]. Advanced Functional Materials, 2018, 28(23): 1800179. [87] LI A L, CHEN Q X, WANG P P, et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/graphene/SnS2 p-g-n junctions[J]. Advanced Materials, 2018, 31(6): 1805656. [88] ARORA H, JUNG Y, VENANZI T, et al. Effective hexagonal boron nitride passivation of few-layered InSe and GaSe to enhance their electronic and optical properties[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43480-43487. [89] ZHAO Y, LI C L, JIANG J Z, et al. Sensitive and stable tin-lead hybrid perovskite photodetectors enabled by double-sided surface passivation for infrared upconversion detection[J]. Small, 2020, 16(26): 2001534. |
[1] | 杨晨飞,韦文生,汪子盛,丁靖扬. 嵌入分段半超结的p-栅增强型垂直GaN基HFET*[J]. 电子与封装, 2024, 24(8): 80402-. |
[2] | 白天越, 乔媛媛, 赵宁. Sn晶粒取向对微焊点元素迁移及界面反应的影响*[J]. 电子与封装, 2023, 23(3): 30101-. |
[3] | 李文;冯雪华;张信波;朱小会. 导电胶粘接片式器件的接触电阻试验研究[J]. 电子与封装, 2023, 23(2): 20202-. |
[4] | 黄森, 张寒, 郭富强, 王鑫华, 蒋其梦, 魏珂, 刘新宇. 面向下一代GaN功率技术的超薄势垒AlGaN/GaN异质结功率器件*[J]. 电子与封装, 2023, 23(1): 10102-. |
[5] | 王岩;王多笑;董兆文;沐方清. 低温共烧陶瓷多层基板界面缺陷与抑制[J]. 电子与封装, 2021, 21(7): 70205-. |
[6] | 马艳艳;赵鹤然;康敏;李莉莹;曹丽华. 进口AuSn20焊料环特性及焊缝化合物分析*[J]. 电子与封装, 2021, 21(4): 40201-. |
[7] | 吴昊平;周青云;胡滢. 基于内聚力模型脱粘仿真的内埋芯片PI分层研究[J]. 电子与封装, 2021, 21(4): 40206-. |
[8] | 孙建洁;张可可;许帅;张明. 多晶硅发射极晶体管放大系数稳定性研究[J]. 电子与封装, 2021, 21(4): 40401-. |
[9] | 陈全胜, 张明, 彭时秋, 陈培仓, 王涛, 贺琪. 硅基雪崩光电二极管技术及应用*[J]. 电子与封装, 2021, 21(3): 30101-. |
[10] | 武艳青,赵 润,赵永林,宋红伟,于峰涛. 铟镓砷与金属接触形貌异常分析和改进[J]. 电子与封装, 2019, 19(8): 31-35. |
[11] | 赵圣哲,张立荣,宋磊. 高频双极晶体管工艺特性研究[J]. 电子与封装, 2019, 19(7): 40-44. |
[12] | 李卿,惠锋,董志丹. 利用TCL与Qt实现IP核图形界面的设计[J]. 电子与封装, 2018, 18(1): 30-33. |
[13] | 罗宁,张有涛,李晓鹏,张敏. 基于InP HBT的5 GS/s采样保持电路设计[J]. 电子与封装, 2017, 17(5): 20-23. |
[14] | 陈哲,李阳. Sn-Cu-Ni系无铅钎料的研究现状[J]. 电子与封装, 2016, 16(6): 1-9. |
[15] | 叶珂,乔明. 一种NiO薄膜的新型制备方法及其应用[J]. 电子与封装, 2016, 16(5): 31-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数: 当日访问总数: 当前在线:
版权所有 © 2019-2024 中国电子科技集团公司第五十八研究所 苏ICP备11028747号
地址:江苏省无锡市滨湖区惠河路5号 邮编:214035 电话:0510-85860386 电子邮箱:ep.cetc58@163.com
本系统由北京玛格泰克科技发展有限公司设计开发