[1] 孙磊. 毫米波相控阵封装天线技术综述[J]. 现代雷达,2020,42(9):1-7. [2] 张跃平. 封装天线技术发展历程回顾[J]. 中兴通讯技术,2017,23(6):41-49. [3] 邵春生. 相控阵雷达研究现状与发展趋势[J]. 现代雷达,2016,38(6):1-12. [4] 万里兮. 系统级封装及其研发领域[J]. 电子工业专用设备,2007,36( 8):1-5,15. [5] 汤晓英. 微系统技术发展和应用[J]. 现代雷达,2016,38(12):45-50. [6] BRAUN T, LE T H, ROSSI M, et al. Development of a scalable AiP module for mmWave 5G MIMO applications based on a double molded FOWLP approach[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021. [7] HUNT J, DING Y C, HSIEH A, et al. Synergy between 2.5/3D development and hybrid 3D wafer level fanout[C]// Electronic System-integration Technology Conference, Amsterdam, Netherlands, 2013. [8] FRANK M, REISSLAND T, LURZ F, et al. Antenna and package design for 61 and 122-GHz radar sensors in embedded wafer-level ball grid array technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2018(12): 5156-5158. [9] WOJNOWSKI M, LACHNER R, BOCK J, et al. Embedded wafer level ball grid array (eWLB) technology for millimeter-wave applications[C]// 2011 IEEE 13th Electronics Packaging Technology Conference, Singapore, IEEE, 2011. [10] WOJNOWSKI M, WAGNER C, LACHNER R, et al. A 77-GHz SiGe single-chip four-channel transceiver module with integrated antennas in embedded wafer-level BGA package[C]// 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, IEEE, 2012. [11] POURMOUSAVI M, WOJNOWSKI M, AGETHEN R, et al. The impact of embedded wafer level BGA package on the antenna performance[C]// IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Torino, Italy, 2013. [12] WOJNOWSKI M, LACHNER R, BOCK J, et al. Embedded wafer level ball grid array (eWLB) technology for high-frequency system-in-package applications[C]// 2011 IEEE 13th Electronics Packaging Technology Conference, Singapore, 2012. [13] FISCHER A, TONG Z, HAMIDIPOUR A, et al. 77-GHz multi-channel radar transceiver with antenna in package[J]. IEEE Transactions on Antennas & Propagation, 2014, 62(3): 1386-1394. [14] BHUTANI A, GULAN H, GOETTEL B, et al. 122 GHz aperture-coupled stacked patch microstrip antenna in LTCC technology[C]// European Conference on Antennas & Propagation, Gothenburg, Sweden, IEEE, 2016. [15] BHUTANI A, GOETTEL B, LIPP A, et al. Packaging solution based on low-temperature cofired ceramic technology for frequencies beyond 100 GHz[J]. Components, Packaging and Manufacturing Technology, IEEE Transactions on, 2019, 9(5): 945-954. [16] ZHANG Y P, MAO J F. An overview of the development of antenna-in-package technology for highly integrated wireless devices[J]. Proceedings of the IEEE, 2019, 107(11): 2265-2280. [17] LIM J H, KWON D H, RIEH J S, et al. RF characterization and modeling of various wire bond transitions[J]. IEEE Transactions on Advanced Packaging, 2005, 28(4): 772-778. [18] SUTONO A, CAFARO N G, LASKAR J, et al. Experimental modeling, repeatability investigation and optimization of microwave bond wire interconnects[J]. IEEE Transactions on Advanced Packaging, 2001, 24(4): 595-603. [19] ZHANG Y P, SUN M, CHUA K M, et al. Antenna-in-package design for wirebond interconnection to highly integrated 60-GHz radios[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 2842-2852. [20] 徐罕,朱亚军,戴飞虎,等. 晶圆级封装中的垂直互连结构[J]. 电子与封装,2021,21(10):100107. [21] XUE M, CAO L Q, WANG Q D, et al. A compact 27 GHz antenna-in-package (AiP) with RF transmitter and passive phased antenna array[C]// 2018 IEEE 68th Electronic Components and Technology Conference (ECTC),San Diego, CA, USA, 2018. [22] THEUSS H, GEISSLER C, HARTNER W. Trends in Fan Out Wafer Level Packaging[C]// 2020 13th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM), Smolenice, Slovakia, 2020. [23] HAMIDIPOUR A, FISCHER A, MAURER L, et al. A rhombic antenna array solution in eWLB package for millimeter-wave applications[C]// 2012 42nd European Microwave Conference, Amsterdam, Netherlands, 2012: 205-208. [24] NASR I, JUNGMAIER R, BAHETI A, et al. A highly integrated 60 GHz 6-channel transceiver with antenna in package for smart sensing and short-range communications[J]. IEEE Journal of Solid-State Circuits, 2016, 51(9): 2066-2076. [25] OLMEN J V, MERCHA A, KATTI G, et al. 3D stacked IC demonstration using a through silicon via first approach[C].2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2008:1-4. [26] REDOLFI A, VELENIS D, THANGARAJU S, et al. Implementation of an industry compliant, 5×50 μm, via-middle TSV technology on 300 mm wafers[C]// 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 2011:1384-1388. [27] VAN H S, STUCCHI M, LI Y, et al. Small pitch, high aspect ratio via-last TSV module[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2016: 43-49. [28] LAU J, LI M, LI M, et al. Fan-out wafer-level packaging for heterogeneous integration[C]// 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, IEEE, 2018. [29] JIN C, SEKHAR V N, BAO X Y, et al. Antenna-in-package design based on wafer-level packaging with through silicon via technology[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(9): 1498-1505. [30] ZHOU S J, CHEN H, ZHANG X S, et al. A low loss feed line for patch antenna based on silicon in millimeter-wave applications[C]// 2020 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 2020. [31] TOPPER M, NDIP I, ERXLEBEN R, et al. 3-D thin film interposer based on TGV (through glass vias): An alternative to Si-interposer[C]// 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2010: 66-73. [32] KURAMOCHI S, KUDO H, AKAZAWA M, et al. Glass interposer technology advances for high density packaging[C]// 2016 IEEE CPMT Symposium Japan (ICSJ), Tokyo, Japan, 2016. [33] XU L,SHI L, GUO, et al. A TGV-based antenna in package for 5G mm-wave application[C]// 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 2021. [34] YU T, ZHANG X, CHEN L, et al. Development of embedded glass wafer fan-out package with 2D antenna arrays for 77 GHz millimeter-wave chip[C]// 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 2020. [35] SERAFY C, SRIVASTAVA A. TSV replacement and shield insertion for TSV-TSV coupling reduction in 3-D global placement[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(4): 554-562. [36] ONITAKE S, INOUE K, TAKAYAMA M, et al. TGV (Thru-glass via) metallization by direct Cu plating on glass[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, IEEE, 2016. [37] KIM J S, LEE K W, PARK D J, et al. Application of through mold via (TMV) as PoP base package[C]// 2008 58th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 2008. [38] SEKHAR V N, CERENO D I, HO D, et al. Laser drilling of thru mold vias (TMVs) for FOWLP application[C]// 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 2020. [39] YOSHIDA A, WEN S M, LIN W, et al. A study on an ultra thin PoP using through mold via technology[C]// 2011 IEEE 61st Electronic Components and Technology Conference(ECTC), Lake Buena Vista, FL, USA,2011: 1547-1551. [40] CHE F X, CHEN Z. Study on electrical performance and mechanical reliability of antenna in package (AIP) with fan-out wafer level packaging technology[C]// 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 2018. [41] YADAV B K, KANDPAL H C. Spectral switching-based fan-out architecture and information processing in free-space[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(20): 5956-5961. [42] CHEN Z, GUAN L T, HO D W, et al. Millimeter-wave antenna in fan-out wafer level packaging for 60 GHz WLAN application[C]// 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018: 331-336. [43] LI X R, OGAWA T, SHIBATA T, et al. Imprint-through mold via (i-TMV) with high aspect ratio and narrow pitch for antenna in package[C]// 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 2020. [44] SUN M, LIM T G, CHAI T C. 77 GHz cavity-backed AiP array in FOWLP technology[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), Shanghai, China, 2022. [45] SHARON P S L, SER C C, DAVID H S W, et al. Assembly challenges and demonstrations of ultra-large Antenna in Package for Automotive Radar applications[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), Shanghai, China, IEEE, 2022. [46] HAMELINK J, POELMA R H, KENGEN M. Through-polymer-via for 3D heterogeneous integration and packaging[C]// 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC), Singapore, 2015. [47] HENG Q Y, EFE O, MARCO K, et al. Antenna-in-package (AiP) using through-polymer vias (TPVs) for a 122 GHz radar chip[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(6): 893-901. [48] WANG L, BOS A, WEELDEN T V, et al. The next generation advanced MEMS and sensor packaging[C]// 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging, Xi’an, China, 2010: 55-60. [49] HAMELINK J, WEELDEN T V, HOEDEMAKER M, et al. Selective over-molding of a CMOS TSV wafer with the flexible 3D integration of components and sensors[C]// 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), Singapore, 2017. [50] BOS A, WANG L, WEELDEN T V, et al. Encapsulation of the next generation advanced mems& sensor microsystems[C]// 2009 European Microelectronics and Packaging Conference, Rimini, Italy, 2009. |