[1] YANG H. Study on the preparation process and sintering performance of doped nano-silver paste[J]. Reviews on Advanced Materials Science, 2022, 61(1): 969-976. [2] ZHANG L, YUAN X B, WU X J, et al. Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1181-1196. [3] 张宸赫, 李盼桢, 董浩楠, 等. 高功率半导体用纳米银焊膏的研究现状[J]. 电子与封装, 2024, 24(5): 050203. [4] LIU Y C, TEO J W R, TUNG S K. High-temperature creep and hardness of eutectic 80Au/20Sn solder[J]. Journal of Alloys and Compounds, 2008, 448(1/2): 340-343. [5] KIM S, KIM K S, KIM S S, et al. Interfacial reaction and die attach properties of Zn-Sn high-temperature solders[J]. Journal of Electronic Materials, 2009, 38(2): 266-272. [6] CHEN C T, KIM D J, WANG Z H, et al. Low temperature low pressure solid-state porous Ag bonding for large area and its high-reliability design in die-attached power modules[J]. Ceramics International, 2019, 45(7): 9573-9579. [7] LI M Y, XIAO Y, ZHANG Z H, et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9157-9168. [8] QU G D, DENG Z Y, GUO W, et al. The heat-dissipation sintered interface of power chip and heat sink and its high-temperature thermal analysis[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(6): 816-822. [9] FANG Y C, WANG Y C, OUYANG F Y. Low-temperature bonding process by silver nanoparticles paste for power electronic devices[J]. Journal of Electronic Materials, 2023, 52(2): 792-800. [10] YANG J, DONG H N, HUANG Z, et al. Exploration of organic matrixes in conductive silver paste: A comprehensive review[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(18): 1248. [11] GAO Q, ZHOU W, XIA Z D, et al. Investigation of ethylene glycol, α-terpineol, and polyethylene glycol 400 on the sintering properties of Cu-Ag core-shell micro/nano-mixed paste[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(21): 1585. [12] FENG J J, GAO Y J, ZHANG F Q, et al. Effects of organic binder on rheological behaviors and screen-printing performance of silver pastes for LTCC applications[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(14): 10774-10784. [13] HSIANG H I, CHEN C C, FAN L F, et al. Rheological behaviors of silver conductive pastes with ethyl cellulose[J]. Circuit World, 2020, 47(1): 43-49. [14] HU P A, O’NEIL W, HU Q. Synthesis of 10 nm Ag nanoparticle polymer composite pastes for low temperature production of high conductivity films[J]. Applied Surface Science, 2010, 257(3): 680-685. [15] SCHWARZBAUER H, KUHNERT R. Novel large area joining technique for improved power device performance[J]. IEEE Transactions on Industry Applications, 1991, 27(1): 93-95. [16] YU F, JOHNSON R W, HAMILTON M C. Process optimization of pressure-assisted rapid Ag sintering die attach for 300 ℃ applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(6): 855-861. [17] WANG T, CHEN X, LU G Q, et al. Low-temperature sintering with nano-silver paste in die-attached interconnection[J]. Journal of Electronic Materials, 2007, 36(10): 1333-1340. [18] 李志豪,汪松英,洪少健,等. 镀银板表面粗糙度对纳米银焊膏快速烧结互连质量的影响[J]. 电子与封装,2024, 24(7):070201. [19] BAI J G, LU G Q. Thermomechanical reliability of low-temperature sintered silver die attached SiC power device assembly[J]. IEEE Transactions on Device and Materials Reliability, 2006, 6(3): 436-441. [20] CHUA S T, SIOW K S. Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 ℃[J]. Journal of Alloys and Compounds, 2016, 687: 486-498. [21] VOLLATH D. Criteria ruling particle agglomeration[J]. Beilstein Journal of Nanotechnology, 2021, 12: 1093-1100. [22] 费维栋. 固体物理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2020. [23] 张帆, 郭益平, 周伟敏. 材料性能学[M]. 上海: 上海交通大学出版社, 2021 [24] JIU J T, ZHANG H, NAGAO S, et al. Die-attaching silver paste based on a novel solvent for high-power semiconductor devices[J]. Journal of Materials Science, 2016, 51(7): 3422-3430. [25] ZHANG H Q, BAI H L, JIA Q, et al. High electrical and thermal conductivity of nano-Ag paste for power electronic applications[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1543-1555. [26] ZURUZI A S, SIOW K S. Electrical conductivity of porous silver made from sintered nanoparticles[J]. Electronic Materials Letters, 2015, 11(2): 308-314. [27] ZHUO L C, WANG Q H, SUN J C, et al. Size-dependent thermal properties and sintering behaviors of silver nanoparticles: insights from molecular dynamics simulation[J]. Applied Physics A, 2024, 130(6): 394 [28] LI Y, JING H Y, HAN Y D, et al. Microstructure and joint properties of nano-silver paste by ultrasonic-assisted pressureless sintering[J]. Journal of Electronic Materials, 2016, 45(6): 3003-3012. [29] YANG F, HU B, PENG Y, et al. Ag microflake-reinforced nano-Ag paste with high mechanical reliability for high-temperature applications[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(6): 5526-5535. [30] 中央军委装备发展部. 半导体分立器件试验方法: GJB 128B—2021[S]. 北京: 国家军用标准出版发行部, 2022. [31] LI X, CHEN G, CHEN X, et al. Mechanical property evaluation of nano-silver paste sintered joint using lap-shear test[J]. Soldering and Surface Mount Technology, 2012, 24(2): 120-126. [32] YANG C A, YANG S, LIU X, et al. Enhancement of nano-silver chip attachment by using transient liquid phase reaction with indium[J]. Journal of Alloys and Compounds, 2018, 762: 586-597. [33] GADAUD P, CACCURI V, BERTHEAU D, et al. Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution[J]. Materials Science and Engineering: A, 2016, 669: 379-386.
|