[1] 高爽, 郑宇亭, 张志国. 第三代半导体发展现状及未来展望[J]. 科技导报, 2024, 42(8): 29-38. [2] GUO X, XUN Q, LI Z, et al. Silicon carbide converters and MEMS devices for high-temperature power electronics: a critical review[J]. Micromachines, 2019, 10(6): E406. [3] ZENG G, MCDONALD S, NOGITA K. Development of high-temperature solders: review[J]. Microelectronics Reliability, 2012, 52(7): 1306-1322. [4] SUGANUMA K, KIM S J, KIM K S. High-temperature lead-free solders: properties and possibilities[J]. JOM, 2009, 61(1): 64-71. [5] LIU H, XUE S B, TAO Y, et al. Study on the reliability of novel Au–30Ga solder for high-temperature packaging[J]. Journal of Materials Research and Technology, 2020, 9(6): 15908-15923. [6] CHIDAMBARAM V, HATTEL J, HALD J. High-temperature lead-free solder alternatives[J]. Microelectronic Engineering, 2011, 88(6): 981-989. [7] WANG S, LI M Y, JI H J, et al. Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging[J]. Scripta Materialia, 2013, 69(11/12): 789-792. [8] KIM M S, NISHIKAWA H. Silver nanoporous sheet for solid-state die attach in power device packaging[J]. Scripta Materialia, 2014, 92: 43-46. [9] LEVITAS V I, SAMANI K. Size and mechanics effects in surface-induced melting of nanoparticles[J]. Nature Communications, 2011, 2: 284. [10] LEE J, LEE J, TANAKA T, et al. In situ atomic-scale observation of melting point suppression in nanometer-sized gold particles[J]. Nanotechnology, 2009, 20(47): 475706. [11] LI Z, CHANG S, KHUJE S, et al. Recent advancement of emerging nano copper-based printable flexible hybrid electronics[J]. ACS Nano, 2021, 15(4): 6211-6232. [12] LI W L, SUN Q Q, LI L Y, et al. The rise of conductive copper inks: challenges and perspectives[J]. Applied Materials Today, 2020, 18: 100451. [13] POWAR N, PATEL V J, PAGARE P, et al. Cu nanoparticle: synthesis, characterization and application[J]. Chemical Methodologies, 2019, 3: 457-480. [14] WANG Y J, XU D, YAN H D, et al. Low-temperature copper sinter-joining technology for power electronics packaging: a review[J]. Journal of Materials Processing Technology, 2024, 332: 118526. [15] GERMAN R M. Sintering: from empirical observations to scientific principles[M]. Waltham: Elsevier, 2014. [16] YAN J F, ZOU G S, LIU L, et al. Sintering mechanisms and mechanical properties of joints bonded using silver nanoparticles for electronic packaging applications[J]. Welding in the World, 2015, 59(3): 427-432. [17] SEONG Y, KIM Y, GERMAN R, et al. Dominant mechanisms of the sintering of copper nano-powders depending on the crystal misalignment[J]. Computational Materials Science, 2016, 123: 164-175. [18] CHENG B Q, NGAN A H W. The crystal structures of sintered copper nanoparticles: a molecular dynamics study[J]. International Journal of Plasticity, 2013, 47: 65-79. [19] WU R, ZHAO X C, LIU Y X. Atomic insights of Cu nanoparticles melting and sintering behavior in CuCu direct bonding[J]. Materials & Design, 2021, 197: 109240. [20] WANG J Q, SHIN S, HU A M. Geometrical effects on sintering dynamics of Cu–Ag core–shell nanoparticles[J]. The Journal of Physical Chemistry C, 2016, 120(31): 17791-17800. [21] DENG D, JIN Y, CHENG Y, et al. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3839-3846. [22] LEE J, JUN J, NA W, et al. Fabrication of sinter-free conductive Cu paste using sub-10 nm copper nanoparticles[J]. Journal of Materials Chemistry C, 2017, 5(47): 12507-12512. [23] ISHIZAKI T, SATOH T, KUNO A, et al. Thermal characterizations of Cu nanoparticle joints for power semiconductor devices[J]. Microelectronics Reliability, 2013, 53(9/10/11): 1543-1547.[LinkOut] [24] YAO Y, FRY J, FINE M E, et al. The Wiedemann-Franz-Lorenz relation for lead-free solder and intermetallic materials[J]. Acta Materialia, 2013, 61(5): 1525-1536. [25] KIM S, KIM K S, KIM S S, et al. Interfacial reaction and die attach properties of Zn-Sn high-temperature solders[J]. Journal of Electronic Materials, 2009, 38(2): 266-272. [26] LIU J, CHEN H, JI H, et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33289-33298. [27] LI J L, XU Y, ZHAO X L, et al. Enhancement and mechanism of copper nanoparticle sintering in activated formic acid atmosphere at low temperature[J]. ECS Journal of Solid State Science and Technology, 2021, 10(5): 054004. [28] GAO Y, LI W L, CHEN C T, et al. Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere[J]. Materials & Design, 2018, 160: 1265-1272. [29] YUAN Y L, WU H Y, LI J J, et al. Cu-Cu joint formation by low-temperature sintering of self-reducible Cu nanoparticle paste under ambient condition[J]. Applied Surface Science, 2021, 570: 151220. [30] LI J J, LIANG Q, SHI T L, et al. Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding[J]. Journal of Alloys and Compounds, 2019, 772: 793-800. [31] MA L M, LU Z Y, JIA Q, et al. Sintering mechanism of bimodal-sized Cu nanoparticle paste for power electronics packaging[J]. Journal of Electronic Materials, 2024, 53(6): 2988-2998. [32] XIN J B, GAO Y, ZHANG C H, et al. High performance Cu sintering joint for power devices enabled by in situ generation of Cu particles with multi-level hierarchical structures[J]. Journal of Materials Processing Technology, 2024, 329: 118435. [33] WANG K F, WEN J Y, FENG J Y, et al. A novel Cu@Ag nano paste with low porosity for rapidly sintering in air condition[J]. Materials Characterization, 2024, 209: 113762. [34] ZHANG W W, ZHANG P H, LU D S, et al. A supersaturated Cu-Ag nanoalloy joint with ultrahigh shear strength and ultrafine nanoprecipitates for power electronic packaging[J]. Journal of Materials Science & Technology, 2023, 145: 56-65. [35] GONG X J, WEI B, TENG J W, et al. Regulating the oxidation resistance of Cu-5Ag alloy by heat treatment[J]. Corrosion Science, 2021, 190: 109686. [36] LU J, MA S Y, WANG X X, et al. The cluster-plus-glue-atom models of solid solution CuNi alloys: a first-principles study[J]. Computational Materials Science, 2018, 143: 439-445. [37] LI W, LI L, LI F, et al. Self-organizing, environmentally stable, and low-cost copper-nickel complex inks for printed flexible electronics[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 8146-8156. [38] ORRù R, LICHERI R, LOCCI A M, et al. Consolidation/synthesis of materials by electric current activated/assisted sintering[J]. Materials Science and Engineering: R: Reports, 2009, 63(4/5/6): 127-287.[LinkOut] [39] 黄圆, 田艳红, 江智, 等. 脉冲电流快速烧结纳米铜焊膏连接铜镍基板研究[J]. 机械工程学报, 2017, 53(4): 34-42. [40] 黄圆, 杭春进, 田艳红, 等. 纳米铜银核壳焊膏脉冲电流快速烧结连接铜基板研究[J]. 机械工程学报, 2019, 55(24): 51-56. [41] WU Z, LIU W, FENG J, et al. Novel Cu@Ag micro/nanoparticle hybrid paste and its rapid sintering technique via electromagnetic induction for high-power electronics[J]. ACS Omega, 2023, 8(34): 31021-31029. [42] JI H J, ZHOU J B, LIANG M, et al. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging[J]. Ultrasonics Sonochemistry, 2018, 41: 375-381. [43] ZHANG W W, CAO Y C, HUANG J Y, et al. Ultrasonic-accelerated metallurgical reaction of Sn/Ni composite solder: Principle, kinetics, microstructure, and joint properties[J]. Ultrasonics Sonochemistry, 2020, 66: 105090.[LinkOut] [44] WANG X Q, LU D S, SONG L L, et al. Efficient synthesis and excellent performance of low-temperature sintering Cu@Ni nanoparticle materials for power electronic packaging[C]// 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 2024. [45] JI H J, CHENG X, LI M Y. Ultrafast ultrasonic-assisted joining of bare α-alumina ceramics through reaction wetting by aluminum filler in air[J]. Journal of the European Ceramic Society, 2016, 36(16): 4339-4344. [46] LIU X D, ZHOU S Q, NISHIKAWA H. Thermal stability of low-temperature sintered joint using Sn-coated Cu particles during isothermal aging at 250 ℃[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(17): 12606-12616. [47] GAO Y, JIU J T, CHEN C T, et al. Oxidation-enhanced bonding strength of Cu sinter joints during thermal storage test[J]. Journal of Materials Science & Technology, 2022, 115: 251-255. [48] DAI D F, QIAN J, LI J C, et al. A rapid-sintering Cu-Cu joints with ultrahigh shear strength and super reliability for power electronics package[J]. Materials Science in Semiconductor Processing, 2024, 178: 108405. [49] NAKAKO H, ISHIKAWA D, SUGAMA C, et al. Relationship between bonding properties and porosity of sintered Cu bonding[C]// International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM), Nuremberg, Germany,2019. [50] NAKAKO H, ISHIKAWA D, SUGAMA C, et al. Sintering copper die-bonding paste curable under pressureless conditions[C]// International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe), Nuremberg, Germany, 2017. [51] KAN Y S, HAYAKAWA S, FUNAKI T. Reliability improvement of 3.3 kV full-SiC power modules for power cycling tests with sintered copper die attach technology[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 13(9): 1476-1485.
|