[1] SHOR P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]// Proceedings 35th Annual Symposium on Foundations of Computer Science, November 20-22, 1994, Santa Fe, NM, USA. IEEE, 1994: 124-134. [2] HUANG H L, WU D C, FAN D J, et al. Superconducting quantum computing: A review[J]. Science China-Information Sciences, 2020, 63(8): 59-90. [3] 金贻荣. 超导与量子计算[J]. 自然杂志, 2020, 42(4): 301-310. [4] COLLESS J I, REILLY D J. Modular cryogenic interconnects for multi-qubit devices[J]. Review of Scientific Instruments, 2014, 85(11): 1-5. [5] 郑伟文,李晓伟,熊康林,等. 超导量子芯片集成技术概述[J]. 电子元件与材料, 2022, 41(11): 1143-1148. [6] CHEN Z J, MEGRANT A, KELLY J, et al. Fabrication and characterization of aluminum airbridges for superconducting microwave circuits[J]. Applied Physics Letters, 2014, 104(5): 052602. [7] 宿非凡,杨钊华,赵寿宽,等. 铌基超导量子比特及辅助器件的制备[J]. 物理学报, 2022, 71(5): 33-47. [8] ABUWASIB M, KRANTZ P, DELSING P. Fabrication of large dimension aluminum air-bridges for superconducting quantum circuits[J]. Journal of Vacuum Science & Technology B, 2013, 31(3): 031601. [9] BRONN N T, ADIGA V P, OLIVADESE S B, et al. High coherence plane breaking packaging for superconducting qubits[J]. Quantum Science and Technology, 2018, 3(2): 024007. [10] BEJANIN J H, MCCONKEY T G, RINEHART J R, et al. Three-dimensional wiring for extensible quantum computing: The quantum socket[J]. Physical Review Applied, 2016, 6(4): 44010. [11] 刘强. 超导量子器件的制备与可扩展封装方案的研究[D]. 南京: 南京大学, 2017. [12] YU J X, ZHENG Y, ZHOU S J, et al. Indium-based flip-chip interconnection for superconducting quantum computing application[C]// 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), August 10-13, 2022, Dalian, China. IEEE, 2022: 1-6. [13] KAWAI J, SAKAMOTO Y, KAWABATA M, et al. A reliable molding technique by using epoxy-based resin for thin-film superconducting quantum interference devices[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(4): 3901-3905. [14] WENNER J, NEELEY M, BIALCZAK R C, et al. Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits[J]. Superconductor Science & Technology, 2011, 24(6): 65001- 65007. [15] AVERKIN A S, KARPOV A, SHULGA K, et al. Broadband sample holder for microwave spectroscopy of superconducting qubits[J]. Review of Scientific Instruments, 2014, 85(10): 104702. [16] PATTERSON A D, RAHAMIM J, TSUNODA T, et al. Calibration of a cross-resonance two-qubit gate between directly coupled transmons[J]. Physical Review Applied, 2019, 12(6): 064013. [17] RAHAMIM J, BEHRLE T, PETERER M J, et al. Double-sided coaxial circuit QED with out-of-plane wiring[J]. Applied Physics Letters, 2017, 110(22): 222602. [18] SATOH T, HINODE K, AKAIKE H, et al. Planarization of Josephson junctions for large-scale integrated Nb SFQ circuits by mechanical polishing[J]. Physica C: Superconductivity, 2004, 412(1-2): 1447-1450. [19] NAGASAWA S, HINODE K, SUGITA M, et al. Planarized multi-layer fabrication technology for LTS large-scale SFQ circuits[J]. Superconductor Science & Technology, 2003, 16(12): 1483-1486. [20] ROSENBERG D, WEBER S J, CONWAY D, et al. Solid-state qubits: 3D integration and packaging[J]. IEEE Microwave Magazine, 2020, 21(8): 72-85. [21] OLIVER W D, WELANDER P B. Materials in superconducting quantum bits[J]. MRS Bulletin, 2013, 38(10): 816-825. [22] DUNSWORTH A, BARENDS R, CHEN Y, et al. A method for building low loss multi-layer wiring for superconducting microwave devices[J]. Applied Physics Letters, 2018, 112(6): 63502. [23] KOCH J, YU T M, GAMBETTA J, et al. Charge-insensitive qubit design derived from the Cooper pair box[J]. Physical Review A, 2007, 76(4): 42319. [24] YAN F, GUSTAVSSON S, KAMAL A, et al. The flux qubit revisited to enhance coherence and reproducibility[J]. Nature Communications, 2016, 7(1): 12964. [25] FOXEN B, MUTUS J Y, LUCERO E, et al. Qubit compatible superconducting interconnects[J]. Quantum Science and Technology, 2018, 3(1): 14005. [26] 周宇轩. 可扩展超导量子器件的设计与制备[D]. 哈尔滨: 哈尔滨工业大学, 2020. [27] LI X G, ZHANG Y S, YANG C H, et al. Vacuum-gap transmon qubits realized using flip-chip technology[J]. Applied Physics Letters, 2021, 119(18): 1-6. [28] KOSEN S, LI H X, ROMMEL M, et al. Building blocks of a flip-chip integrated superconducting quantum processor[J]. Quantum Science and Technology, 2022, 7(3): 035018. [29] DAS R N, YODER J L, ROSENBERG D, et al. Cryogenic qubit integration for quantum computing[C]// 2018 IEEE 68th Electronic Components And Technology Conference (ECTC 2018), May 29-June 01, 2018, San Diego, CA, USA. IEEE, 2018: 504-514. [30] VAHIDPOUR M, O'BRIEN W, WHYLAND J T, et al. Superconducting through-silicon vias for quantum integrated circuits[J]. Quantum Physics, 2017: 02226. [31] 张超. TSV耦合串扰及其优化研究[D]. 西安: 西安电子科技大学, 2021. [32] MALLEK J L, YOST D W, ROSENBERG D, et al. Fabrication of superconducting through-silicon vias[J]. Quantum Physics, 2021: 08536. [33] ALFARO-BARRANTES J A, MASTRANGELI M, THOEN D J, et al. Fabrication of Al-based superconducting high-aspect ratio TSVs for quantum 3D integration[C]// 2020 33rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2020), January 18-22, 2020, Vancouver, Canada. IEEE, 2020: 932-935. [34] ALFARO-BARRANTES J A, MASTRANGELI M, THOEN D J, et al. Highly-conformal sputtered through-silicon vias with sharp superconducting transition[J]. Journal of Microelectromechanical Systems, 2021, 30(2): 253-261. [35] ALFARO-BARRANTES J A, MASTRANGELI M, THOEN D J, et al. Superconducting high-aspect ratio through-silicon vias with DC-sputtered Al for quantum 3D integration[J]. IEEE Electron Device Letters, 2020, 41(7): 1114-1117. [36] ALFARO J A, SBERNA P M, SILVESTRI C, et al. Vacuum assisted liquified metal (VALM) TSV filling method with superconductive material[C]// 2018 IEEE Micro Electro Mechanical Systems (MEMS), January 21-25, 2018, Belfast, North Ireland. IEEE, 2018: 547-550. [37] GRIGORAS K, SIMBIEROWICZ S, GRONBERG L, et al. Superconducting TiN through-silicon-vias for quantum technology[C]// 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC), December 04-06, 2019, Singapore, Singapore. IEEE, 2019: 81-82. [38] ROSENBERG D, KIM D, DAS R, et al. 3D integrated superconducting qubits[J]. npj Quantum Information, 2017, 3(1): 42. [39] YOST D R W, SCHWARTZ M E, MALLEK J, et al. Solid-state qubits integrated with superconducting through-silicon vias[J]. npj Quantum Information, 2020, 6(1): 59. [40] BRECHT T, PFAFF W, WANG C, et al. Multilayer microwave integrated quantum circuits for scalable quantum computing[J]. npj Quantum Information, 2016, 2(1): 1-4. |