[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2014. [2] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [3] GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015. [4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016. [5] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017. [6] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2025-01-06]. https://arxiv.org/abs/1804.02767v1. [7] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2025-01-06]. https://ARXIV.org/abs/2004.10934v1. [8] JOCHER G, LIU C Y, HOGAN A, et al. Ultralytics/yolov5: initial release[EB/OL]. [2025-01-06]. https://github.com/ultralytics/yolov5. [9] LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial application[EB/OL]. [2025-01-06]. https://github.com/meituan/YOLOv6. [10] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023. [11] DING X H, ZHANG X Y, MA N N, et al. Repvgg: Making vgg-style convnets great again[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021), Nashville, Tennessee, USA, 2021. [12] HUANGFU Z M, LI S Q. Lightweight you only look once v8: an upgraded you only look once v8 algorithm for small object identification in unmanned aerial vehicle images[J]. Applied Sciences, 2023, 13(22): 12369. [13] 陈卫彪, 贾小军, 朱响斌, 等. 基于DSM-YOLO v5的无人机航拍图像目标检测[J]. 计算机工程与应用, 2023, 59(18): 226-233. [14] LI Y T, FAN Q S, HUANG H S, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304. [15] CUBUK E D, ZOPH B, MANE D, et al. AutoAugment: learning augmentation policies from data[EB/OL]. [2025-01-06]. https://arxiv.org/abs/1805.09501v3. [16] ZHU C C, HE Y H, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019. [17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision – ECCV 2018, Munich, Germany, 2018. [18] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV), Venice 2017, Venice, Italy, 2017. [19] ZHU X Z, HU H, LIN S, et al. Deformable convnets v2: More deformable, better results[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, California, USA, 2019. [20] LIU S T, HUANG D, WANG Y H. Learning spatial fusion for single-shot object detection[EB/OL]. [2025-01-06]. https://arxiv.org/abs/1911.09516v2.
|