中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2022, Vol. 22 ›› Issue (3): 030304 . doi: 10.16257/j.cnki.1681-1070.2022.0307

• 电路与系统 • 上一篇    下一篇

基于Vitis-AI架构的语义分割ENET模型实现*

胡凯;刘彤;武亚恒;谢达   

  1. 中科芯集成电路有限公司,江苏 无锡 214072
  • 收稿日期:2021-06-04 出版日期:2022-03-24 发布日期:2021-11-26
  • 作者简介:胡凯(1984—),男,江苏常州人,硕士,高级工程师,从事集成电路设计及产业化工作,在FPGA设计及EDA软件开发等具有丰富的经验。

The Effectuation ofSemantic Segmentation ENET Model Based on Vitis-AI

HU Kai, LIU Tong, WU Yaheng, XIE Da   

  1. China Key System & Integrated Circuit Co., Ltd., Wuxi 214072, China
  • Received:2021-06-04 Online:2022-03-24 Published:2021-11-26

摘要: 随着人工智能(Artificial Intelligence, AI)在自动驾驶和可穿戴等复杂环境中得到广泛应用,一种高效率的语义分割模型成为神经网络模型重要的解决对象。以传统ENET网络模型为基础,提出改进ENET网络,可利用DPU内部的EeLU激活函数硬件模式减少参数以改进ENET网络,提高DPU的工作性能。通过搭建语义分割的Vitis-AI架构平台,完成构建量化模型和模型网络的训练学习。对比分析多种语义分割试验结果,改进ENET网络,使用更少计算资源达到最优精度,在ZCU106的硬件平台上进行部署,对改进ENET网络的性能进行分析,结果表明试验结果和仿真结果一致。

关键词: 深度学习处理单元, ENET网络, 语义分割

Abstract: With the wide application of artificial intelligence (AI) in complex environment such as automatic driving and wearable, an efficient semantic segmentation model has become an important solution object of neural network model. Based on the traditional ENET network model, propose to improve the ENET network. The improved ENET network can use the EeLU activation function hardware mode in DPU to reduce parameters and improve the working performance of DPU. By building the semantic segmentation Vitis-AI architecture platform, the training and learning of constructing quantitative model and model network are completed. A variety of semantic segmentation test results are compared and analyzed. The improved ENET network uses less computing resources to achieve the optimal accuracy. It is deployed on the hardware platform of ZCU106, the performance of the improved ENET network is analyzed and the test results are consistent with the simulation results.

Key words: deeplearningprocessorunit, ENETnetwork, semanticsegmentation

中图分类号: