[1] EPSTEIN, CHARLES M. Book review: EEG/ERP analysis: Methods and applications[J]. Journal of Clinical Neurophysiology, 2016, 33(1): 76. [2] PRASHANT P, JOSHI A, GANDHI V. Brain computer interface: A review[C]// 2015 5th Nirma University International Conference on Engineering (NUiCONE), Nov 26-28, 2015, Ahmedabad, India: IEEE, 15905312. [3] CASSON A, YATES D, SMITH S, et al. Wearable electroencephalography[J]. Engineering in Medicine & Biology Magazine IEEE, 2010, 29(3):44-56. [4] TAHERI B, KNIGHT R, SMITH R. A dry electrode for EEG recording[J]. Electroencephalogr Clin Neurophysiol, 1994, 90(5):376-383. [5] SHAD E, MOLINAS M, YTTERDAL T. Impedance and noise of passive and active dry EEG electrodes: A review[J]. IEEE Sensors Journal, 2020, 20(24): 14565-14577. [6] HORI H, MORETTI G, REBORA A, et al. The thickness of human scalp: Normal and bald[J]. Journal of Investigative Dermatology, 1972, 58(6): 396-399. [7] GRISS P, TOLVANEN-LAAKSO H, MERIL?INEN P, et al. Characterization of micromachined spiked biopotential electrodes[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(6): 597-604. [8] RUFFINI G, DUNNE S, FUENTEMILLA L, et al. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface[J]. Sensors & Actuators A Physical, 2007, 144(2): 275-279. [9] WANG L F, LIU J Q, YAN X X, et al. A MEMS-based pyramid micro-needle electrode for long-term EEG measurement[J]. Microsystem Technologies, 2013, 19(2): 269-276. [10] TAHERI B, KNIGHT R, SMITH R. A dry electrode for EEG recording[J]. Electroencephalogr Clin Neurophysiol, 1994, 90(5): 376-383. [11] LIN C T, LIAO L D, LIU Y H, et al. Novel Dry Polymer Foam Electrodes for Long-Term EEG Measurement[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(5):1200-1207. [12] PASION R, PAIVA O, PEDROSA P, et al. Assessing a novel polymer-wick based electrode for EEG neurophysiological research[J]. Journal of Neuroence Methods, 2016, 267: 126-131. [13] MARTINS C, MOREIRA A, MACHADO V, et al. Development of polymer wicks for the fabrication of bio-medical sensors[J]. Materials Science & Engineering C-Materials for Biological Applications, 2015, 49: 356-363. [14] XING X, PEI W H, WANG Y J, et al. Assessing a novel micro-seepage electrode with flexible and elastic tips for wearable EEG acquisition[J]. Sensors and Actuators A: Physical, 2018, 270(1): 262-270. [15] MATSUO T, IINUMA K, ESASHI M. A Barium-titanate-ceramics Capacitive-Type EEG electrode[J]. IEEE Transactions on Biomedical Engineering, 1973, 20(4): 299-300. [16] CLIPPINGDALE J, PRANCE J, CLARK D, et al. Ultrahigh impedance capacitively coupled heart imaging array[J]. Review of Scientific Instruments, 1994, 65(1): 269-270. [17] YU M C, PATRICK N, ERIC K, et al. Wireless non-contact cardiac and neural monitoring[C]// WH '10:Wireless Health 2010, October 5-7, 2010, San Diego, California, USA. [18] SCHEINA G. Non-contact EEG active multielectrode hardware design[D]. Adelaide: Flinders University, 2018. [19] BAEK J, KIM S, HEO J, et al. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses[J]. Journal of Neural Engineering, 2013, 10(2): 024001. [20] LEE S M, KIM J H, BYEON J, et al. A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals[J]. Journal of Neural Engineering, 2013, 10(3): 036006. [21] LEE S M, KIM J H, PARK C, et al. Self-adhesive and capacitive carbon nanotube-based electrode to record electroencephalograph signals from the hairy scalp[J]. IEEE Transactions on Biomedical Engineering, 2015, 63(1): 138-147. [22] BRONZINO E, RATON B, PRESS C. The biomedical engineering handbook: Second edition[J]. Biomedical Engineering Handbook, 2000, 71(2): 215. [23] HUANG J Y, WU C Y, WONG A M, et al. Novel active comb-shaped dry electrode for EEG measurement in hairy site[J]. Biomedical Engineering IEEE Transactions on, 2015, 62(1): 256-263. [24] LEE S, SHIN Y, KUMAR A, et al. Two-wired active spring-loaded dry electrodes for EEG measurements[J]. Sensors (Basel, Switzerland), 2019, 19(20): 4572. [25] JIANG Y Z, LIU L L, LIN C, et al. Flexible and stretchable dry active electrodes with PDMS and silver flakes for bio-potentials sensing systems[J]. IEEE Sensors Journal, 2021, 62(1): 256-263. [26] XU J W, MITRA S, HOOF C, et al. Active electrodes for wearable EEG acquisition: Review and electronics design methodology[J]. IEEE Reviews in Biomedical Engineering, 2017, 99(10): 187-198. [27] HARRISON R, CHARLES C. A low-power low-noise CMOS amplifier for neural recording applications[J]. IEEE Journal of Solid-State Circuits, 2003, 38(6): 958-965. [28] SHAHROKHI F, ABDELHALIM K, SERLETIS D, et al. The 128-channel fully differential digital integrated neural recording and stimulation interface[J]. IEEE Transactions on Biomedical Circuits & Systems, 2010, 4(3): 149-161. [29] LOPEZ M, ANDREI A, MITRA S, et al. An implantable 455-active-electrode 52-channel CMOS neural probe[J]. IEEE Journal of Solid-State Circuits, 2013, 49(1): 248-261. [30] XU J W, YAZICIOGLU F, HARPE P, et al. A 160μW 8-channel active electrode system for EEG monitoring[C]// 2011 IEEE International Solid-State Circuits Conference, Feb 20-24, 2011, San Francisco, CA, USA: IEEE, 11930819. [31] ZOU X D, XU X Y, YAO L B, et al. A 1-V 450-nW fully integrated programmable biomedical sensor interface chip[J]. IEEE Journal of Solid-State Circuits, 2009, 44(4): 1067-1077. [32] FAN Z, HOLLEMAN J, OTIS P. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6(4): 344-355. [33] ZOU X D, LIEW W S, YAO L B, et al. A 1 V 22 μW 32-channel implantable EEG recording IC[C]// 2010 IEEE International Solid-State Circuits Conference, Feb 7-11, 2010, San Francisco, CA, USA: IEEE, 11204919. [34] SONG S, ROOIJAKKERS M, HARPE P, et al. A low-voltage chopper-stabilized amplifier for fetal ECG monitoring with a 1.41 power efficiency factor[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(2): 237-247. [35] DENISON T, CONSOER K, SANTA W, et al. A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials[J]. IEEE Journal of Solid-State Circuits, 2007, 42(12): 2934-2945. [36] XU J W, MITRA S, MATSUMOTO A, et al. A wearable 8-channel active-electrode EEG/ETI acquisition system for body area networks[J]. IEEE Journal of Solid-State Circuits, 2014, 49(9): 2005-2016. [37] GARIPELLI G, CHAVARRIAGA R, MILLAN R. Single trial analysis of slow cortical potentials: a study on anticipation related potentials[J]. Journal of Neural Engineering, 2013, 10(3): 036014. [38] HINTERBERGER T, SCHMIDT S, NEUMANN N, et al. Brain-computer communication and slow cortical potentials[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1011-1018. [39] YAZICIOGLU F, MERKEN P, PUERS R, et al. A 60 μW 60 nV/radicHz readout front-end for portable biopotential acquisition systems[C]// 2006 IEEE International Solid State Circuits Conference, Feb 6-9,2006, San Francisco, CA, USA: IEEE, 9122400. [40] HELLEPUTTE N, KIM S, KIM H, et al. A 160 μA biopotential acquisition IC with fully integrated IA and motion artifact suppression[J]. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6(6): 552-561. [41] WITTE J, HUIJSING J, MAKINWA K. A current-feedback instrumentation amplifier with 5V offset for bidirectional high-side current-sensing[C]// 2008 IEEE International Solid-State Circuits Conference, Feb 3-7, 2008, San Francisco, CA, USA: IEEE, 10047796. [42] DOOL B, HUIJSING J. Indirect current feedback instrumentation amplifier with a common mode input range that includes the negative rail[J]. IEEE Journal of Solid-State Circuits, 1993, 28(7): 743-749. [43] FAN Q W, SEBASTIANO F, HAN H, et al. A 1.8 μW 1 μV-offset capacitively-coupled chopper instrumentation amplifier in 65nm CMOS[C]// 2010 Proceedings of ESSCIRC, Sept 14-16, 2010, Seville, Spain: IEEE, 11630607. [44] XU J Z, BUSZE B, HOOF C, et al. A 15-channel digital active electrode system for multi-parameter biopotential measurement[J]. IEEE Journal of Solid-State Circuits, 2015, 50(9): 2090-2100. [45] HELLEPUTTE N, KONIJNENBURG M, KIM H, et al. 18.3 A multi-parameter signal-acquisition SoC for connected personal health applications[C]// 2014 IEEE International Solid-State Circuits Conference, Feb 9-13, 2014, San Francisco, CA, USA: IEEE, 14147601. [46] ENZ C, TEMES G. Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization[J]. Proceedings of the IEEE, 1996, 84(11): 1584-1614. [47] TOHIDI M, MADSEN K, HECK M, et al. A low-power analog front-end neural acquisition-design for seizure detection[C]// 2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). IEEE, Sept 26-28, 2016, Tallinn, Estonia: IEEE, 16499137. [48] SUN J H, WANG C X, WANG G T, et al. Micro EEG/ECG signal's chopper-stabilization amplifying chip for novel dry-contact electrode[J]. Journal of Semiconductors, 2017, 38(2): 025004. [49] GREENWALD E, SO E, WANG Q H, et al. A bidirectional neural interface IC with chopper stabilized bioADC array and charge balanced stimulator[J]. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10(5): 990-1002. [50] TOHIDI M, MADSEN J, MORADI F, et al. Low-power high-input-impedance EEG signal acquisition SoC with fully integrated IA and signal-specific ADC for wearable applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(6): 1437-1450. [51] KASSIRI H, SALAM M, PAZHOUHANDEH M, et al. Rail-to-rail-input dual-radio 64-channel closed-loop neurostimulator[J]. IEEE Journal of Solid-State Circuits, 2017, 52(11): 2793-2810. [52] DABBAGHIAN A, YOUSELI T, FATMI S, et al. A 9.2-g fully-flexible wireless ambulatory EEG monitoring and diagnostics headband with analog motion artifact detection and compensation[J]. IEEE transactions on biomedical circuits and systems, 2019, 13(6): 1141-1151. [53] SONG S, KONIJNENBURG M, WEGBERG R, et al. A 769 μW Battery-powered single-chip SoC with BLE for multi-modal vital sign monitoring health patches[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 13(6): 1506-1517. [54] YOO J, YAN L, EL-DAMAK D, et al. An 8-channel scalable EEG Acquisition SoC with patient-specific seizure classification and recording processor[J]. IEEE Journal of Solid State Circuits, 2013, 48(1): 214-228.
最新录用说明: 此版本为经同行评议被本刊正式录用的文章。其内容、版式可能与正式出版(印刷版)稍有差异,正式出版后此版本会更新,请以正式出版版本为准。本文已确定卷期、页码以及DOI,可以根据DOI引用。 本文尚未正式出版,未经许可,不得转载。
|