[1]朱晶. 集成电路前沿技术趋势研判及对北京的启示[J]. 电子技术应用, 2021, 47(12): 51-56,63. [2]刘俊,段方,张子扬. 半导体集成电路先进封装技术专利战略研究[J]. 中国集成电路, 2021(11): 82-89. [3]陆燕菲. 集成电路封装技术现状分析与研究[J]. 电子技术, 2020, 49(8): 8-9. [4]朱惠臣,孙晓光,杜黎明. 我国集成电路专用材料发展状况分析[J]. 集成电路应用, 2021, 38(2): 22-25. [5]潘旭麟,李进,袁健. EMC中脱气剂的应用研究[J]. 电子与封装, 2021, 21(12): 120201. [6]秦旺洋,张高文,丁全青. 粘接促进剂对环氧模塑料粘结力和分层的影响[J]. 电子与封装, 2016, 16(12):8-11. [7]郭利静,张力红,武红娟,等. 常用树脂对IC封装用环氧塑封料性能影响[J]. 电子与封装, 2019, 19(9):19-23. [8]张未浩. 不同固化促进剂对环氧模塑料的影响[J]. 中国集成电路, 2019(3): 54-57,76. [9]李志生,周佃香,刘金刚,等. 环氧-酚醛树脂体系用固化促进剂的研究与发展[J]. 绝缘材料, 2016, 49(1): 1-6. [10]李平,孙婷婷,魏玮,等. 迈克尔加成制备咪唑类环氧潜伏性固化促进剂[J]. 热固性树脂, 2020, 35(6): 20-26. [11]张昕,吴佩雯,肖书平,等. 显示驱动芯片原理及发展现状[J]. 液晶与显示, 2020, 35(11): 1156-1167. [12]李丽婷. 人工智能芯片技术进展及产业发展研究报告[J]. 厦门科技, 2019(1): 1-9. [13]陈志文,梅云辉,刘胜,等. 电子封装可靠性:过去、现在及未来[J]. 机械工程学报, 2021, 57(16):248-268. [14]肖潇,姜岗岚,武晓,等. 固化促进剂对硅微粉复合环氧塑封料性能影响[J]. 绝缘材料, 2018, 51(12):23-29. [15]LINEC M, MUSIC B. The effects of silica-based fillers on the properties of epoxy molding compounds[J]. Materials, 2019, 12(11): 1811. [16]MCGARRY M P, TUNCER E, LEE M. Millimeter-wave complex permittivity of silica/alumina-filled epoxy-molding compounds[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41: 1189-1198. [17]CHAO S C, HUANG W C, LIU J H, et al. Oxidation characteristics of commercial copper-based lead frame surface and the bonding with epoxy molding compounds[J]. Microelectronics Reliability, 2019, 99: 161-167. [18]CORNIGLI D, REGGIANI S, GNUDI A, et al. Electrical characterization of epoxy-based molding compounds for next generation HV ICs in presence of moisture[J]. Microelectronics Reliability, 2018, 88-90(SEP): 752-755. [19]LI R, YANG D, ZHANG P, et al. Effects of high-temperature storage on the elasticity modulus of an epoxy molding compound[J]. Materials, 2019, 12(4): 684. [20]INAMDAR A, YANG Y H, PRISACARU A, et al. High temperature aging of epoxy-based molding compound and its effect on mechanical behavior of molded electronic package[J]. Polymer Degradation and Stability, 2021, 188: 109572. [21]宋涛,李志生,封其立,等. 绿色环保无卤阻燃环氧塑封料的研究与应用进展[J]. 电子与封装, 2012, 12(1):1-6. [22]毕洁琼,刘金刚,王松松,等. 微机电系统传感器封装用环氧绝缘材料的制备与性能[J]. 绝缘材料, 2017, 50(7):6-10, 15. [23]方云峰,马骉,王小庆,等. 单组分环氧树脂用潜伏型固化剂研究进展[J]. 中国塑料, 2021, 35(12):154-162. [24]李光,杨明山,张卓,等. 固化促进剂种类对集成电路封装材料固化行为的影响[J]. 中国塑料, 2014, 28(7):22-26. [25]林益军,朱祖钊,全春生,等. 固化促进剂对环氧树脂固化物性能的影响[J]. 热固性树脂, 2011, 26(4):22-25. [26]LEE D E, CHO H J, KONG B S, et al. Investigation on curing characterization of epoxy molding compounds with different latent catalysts by thermal, electrical and mechanical analysis[J]. Thermochimica Acta, 2019, 674: 68-75. [27]MOZAFFARI S M, BEHESHTY M H. Thermally-latent curing agents for epoxy resins: A review[J]. Iran Journal of Polymer Science& Technology, 2019, 31(5): 409-426. [28]XUE Y, LI C, TAN J, et al. Imidazole-loaded microcapsules as latent curing agent with superior solvent stability and shelf life[J]. Journal of Material Science, 2020, 55: 7321-7336. [29]KIM W G. Cure properties of self-extinguishing epoxy resin systems with microencapsulated latent catalysts for halogen-free semiconductor packaging materials[J]. Journal of Applied Polymer Science, 2009, 113(1): 408-417. [30]SHI K, SHEN Y, YANG Y, et al. Novel imidazole derivatives with recoverable activity as latent curing agents for epoxy[J]. Journal of Applied Polymer Science, 2021, 138(4): 49730. [31]CHEN J, CHU N, ZHAO M, et al. Synthesis and application of thermal latent initiators of epoxy resins: A review[J]. Journal of Applied Polymer Science, 2020, 137(48): 49592. [32]肖潇. 无卤阻燃环氧模塑料的制备及其热潜伏活性研究[D]. 北京:中国地质大学, 2019. [33]TSENG C C, CHEN K L, LEE K W, et al. Soluble PEG600-imidazole derivatives as the thermal latent catalysts for epoxy-phenolic resins[J]. Progress in Organic Coatings, 2019, 127: 385-393. [34]OGATA M, KINJO N, EGUCHI S, et al. Effects of curing accelerators on physical properties of epoxy molding compounds[J]. Journal of Applied Polymer Science, 1992, 44(10): 1795-1806. [35]LEE D E, KIM H W, KONG B S, et al. A study on the curing kinetics of epoxy molding compounds with various latent catalysts using differential scanning calorimetry[J]. Journal of Applied Polymer Science, 2017, 134(35): 45252. [36]LEE D E, CHO H J, KONG B S, et al. Investigation on curing characterization of epoxy molding compounds with different latent catalysts by thermal, electrical and mechanical analysis[J]. Thermochimica Acta, 2019, 674: 68-75. [37]RYU J H, CHOI K S, KIM W G. Latent catalyst effects in halogen-free epoxy molding compounds for semiconductor encapsulation[J]. Journal of Applied Polymer Science, 2005, 96(6): 2287-2299. [38]SU C C, WEI C H, YANG C C. Elucidating how advanced organophosphine accelerators affect molding compounds[J]. Industrial & Engineering Chemistry Research, 2013, 52(7): 2528-2536. [39]SU C C, YANG C C, WEI C H. Cure kinetics of high performance epoxy molding compounds[J]. Advanced Materials Research, 2014, 1024: 151-154. [40]KIM W G, CHUN H. Cure properties of naphthalene-based epoxy resin systems with hardeners and latent catalysts for semiconductor packaging materials[J]. Molecular Crystals and Liquid Crystals, 2013, 579(1): 39-49. [41]KIM W G. Cure kinetics of self-extinguishing epoxy resin systems with charge transfer complex type latent catalyst for semiconductor encapsulation[J]. Journal of the Semiconductor & Display Technology, 2014, 13(4): 27-32. |