[1] ZHANG Z Y, CALATA J N, LU G Q, et al, Nanoscale silver sintering for high-temperature packaging of semiconductor devices[J]. MPMD Fifth Global Innovations Proceedings, 2004:129-135. [2] SCHEUERMANN U, WIEDL P. Low temperature joining technology-a high reliability alternative to solder contacts [C]//Workshop on Metal Ceramic Materials for Functional Applications, 1997. [3] HERRING C. Effect of change of scale on sintering phenomena[J]. Journal of Applied Physics, 1950, 21(4): 301-303. [4] LU G Q, CALATA J N, ZHANG Z, et al. A lead-Free, Low-temperature sintering die attach technique for high-performance and high-temperature packaging[C]//IEEE Cpmt Conference on High Density Microsystem Design & Packaging & Component Failure Analysis. IEEE, 2004:42-46. [5] WANG S, JI H J, LI M Y, et al. Fabrication of interconnects using pressureless low temperature sintered Ag nanoparticles[J]. Materials Letters, 2012, 85:61-63. [6] BAI G. Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection[D]. Virginia Polytechnic Institute and State University, 2005. [7] TOBITA M, YASUDA Y, IDE E, et al. Optimal design of coating material for nanoparticles and its application for low-temperature interconnection[J]. Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology, 2010, 12(6):2135-2144. [8] 肖勇. 复合纳米银颗粒低温烧结机理及其性能研究[D]. 哈尔滨:哈尔滨工业大学,2016. [9] JUNG K H, MIN K D, LEE C J, et al. Effect of epoxy content in Ag nanoparticle paste on the bonding strength of MLCC packages[J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2019, 495(30):143487. [10] SCHWARZBAUER H, KUHNERT R. Novel large area jointing technique for improved power device performance[J]. IEEE Transactions on Industry Applications, 1991, 27(1):93-95. [11] ZHANG Z Y, LU G Q. Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2002, 25(4):279-283. [12] 杨帆. 低温烧结纳米银焊点互连行为及可靠性研究[D]. 哈尔滨:哈尔滨工业大学,2021. [13] 陈轼. 纳米银180 ℃烧结互连机理及可靠性研究[D]. 天津:天津大学,2022. [14] YAN J F, ZOU G S, HU A M, et al. Preparation of PVP coated Cu NPs and the application for low-temperature bonding[J]. Journal of Materials Chemistry, 2011, 21(40):15981-15986. [15] KOBAYASHI Y, SHIROCHI T, YASUDA Y, et al. Metal-metal bonding process using metallic copper nanoparticles prepared in aqueous solution[J]. International Journal of Adhesion and Adhesives, 2012, 33:50-55. [16] 刘敬东. 铜纳米颗粒合成及其低温烧结互连行为研究[D]. 哈尔滨:哈尔滨工业大学,2017. [17] SATOH T, ISHIZAKI T. Enhanced pressure-free bonding using mixture of Cu and NiO nanoparticles[J]. Journal of Alloys and Compounds, 2015, 629:118-123. [18] YAMAKAWA T, TAKEMOTO T, SHIMODA M, et al. Influence of joining conditions on bonding strength of joints: efficacy of low-temperature bonding using Cu nanoparticle Paste[J]. Journal of Electronic Materials, 2013, 42(6): 1260-267. [19] 吴雪. 用于功率芯片互连的高性能无压烧结纳米铜膏制备与制程工艺优化[D]. 广州:华南理工大学,2020. [20] BERNSTEIN L. Semiconductor joining by the solid-liquid interdiffusion (SLID) process I. The systems Ag-In, Au-In, and Cu-In[J]. Journal of The Electrochemical Society, 1966, 113(12):1282-1288. [21] SUN L, CHEN M H, ZHANG L, et al. Recent progress in SLID bonding in novel 3D-IC technologies[J]. Journal of Alloys and Compounds, 2019, 818:152825. [22] 王宁. 三维封装芯片Cu-In体系固液互扩散低温键合机理研究[D]. 哈尔滨:哈尔滨工业大学,2012. [23] SOMMADOSSI S, LITYNSKA L, ZIEBA P, et al. Transmission electron microscopy investigation of the microstructure and chemistry of Si/Cu/In/Cu/Si interconnections[J]. Materials Chemistry and Physics, 2003, 81(2): 566-568. [24] LEE C K, YU A B, YAN L L, et al. Characterization of intermediate In/Ag layers of low temperature fluxless solder based wafer bonding for MEMS packaging[J]. Sensor and Actuators A, 2009, 154:85-91. [25] 杨东升. 三维封装芯片固液互扩散低温键合机理研究[D]. 哈尔滨:哈尔滨工业大学,2011. [26] YAO P, LI X, LIANG X, et al. A study on interfacial phase evolution during Cu/Sn/Cu soldering with a micro interconnected height[J]. MATERIALS CHARACTERIZATION, 2017,131:49-63. [27] 冯洪亮. Ni-Sn TLPS连接特性与动力学研究[D]. 北京:北京科技大学,2018. [28] GOLLAS B, ALBERING J H, SCHMUT K, et al. Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low-temperature isothermal diffusion soldering[J]. Intermetallics, 2008, 16(8):962-968. [29] AASMUNDTVEIT K E, LUU T T, NGUYEN H V, et al. Solid-liquid inter Diffusion (SLID) Bonding, for thermally challenging applications[C]//Electronic Components and Technology Conference, 2019:141-149. [30] CAO Y, NING W, LUO L. Wafer-level package with simultaneous TSV connection and cavity hermetic sealing by solder bonding for MEMS device[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2009, 32(3):125-132. [31] 郭福. 无铅钎焊技术与应用[M]. 北京:科学出版社,2006. [32] CHOI S, BIELER T, LUCAS J P, et al. Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and heir composite solders on Cu substrate during isothermal long-term aging[J]. Journal of Electronic Materials, 1999, 28(11):1209-1215. [33] TANG Y, LUO S M, HUANG W F, et al. Effects of Mn nanoparticles on tensile properties of low-Ag Sn-0.3Ag-0.7Cu-xMn solder alloys and joints[J]. Journal of Alloys and Compounds, 2017, 719: 365-375. [34] MAVOORI H, JIN S. Significantly enhanced creep resistance in low-melting-point solders through nanoscale oxide dispersions[J]. Applied Physics Letters, 1998, 73(16):2290-2292. [35] MARSHALL J L, CALDERON J, LUCEY G, et al. Composite solders[J]. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 1991. [36] 朱颖. 锡铅稀土钎料 SMT 焊点热循环失效机制研究[D]. 哈尔滨:哈尔滨工业大学,1996. [37] 马鑫. 微电子表面组装焊点失效的相关力学及金属学因素分析[D]. 哈尔滨:哈尔滨工业大学,2000. [38] LIU Y, SUN F L, YAN T L, et al. Effects of Bi and Ni addition on wettability and melting point of Sn-0.3Ag-0.7Cu Low-Ag Pb-free solder[C]// 2008 International Conference on Electronic Packaging Technology & High Density Packaging. IEEE, 2008. [39] 董昌慧,王凤江,丁海健,等. 微量Co的添加对Sn-Bi共晶钎料性能的影响[J]. 热加工工艺,2015,44(1):190-192. [40] 石成杰. 微米银/铜颗粒增强锡基钎料的研究[D]. 哈尔滨:哈尔滨工业大学,2020. [41] MOKHTARI O, NISHIKAWA H. Transient liquid phase bonding of Sn–Bi solder with added Cu particles[J]. Journal of Materials Science Materials in Electronics, 2016, 27(5):1-13. [42] LIN D C, LIU S, GUO T M. An investigation of nanoparticles addition on solidification kinetics and microstructure development of tin/lead solder[J]. Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, 2003, 360:285-292. [43] TSAO L C, CHANG S Y, LEE C I, et al. Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder[J]. Materials and Design, 2010, 31(10): 4831-4835. [44] TSAO L C, CHANG S Y. Effects of nano-TiO2 additions on the thermal analysis, microstructure and tensile properties of Sn3.5Ag0.25Cu solder[J]. Materials and design, 2010, 31(2): 990-993. |