[1] ROCCAFORTE F, GIANNAZZO F, IUCOLANO F, et al. Surface and interface issues in wide band gap semiconductor electronics[J]. Applied Surface Science, 2010, 256(19): 5727-5735. [2] CHIN H S, CHEONG K Y, ISMAIL A B. A review on die attach materials for SiC-based high-temperature power devices[J]. Metallurgical and Materials Transactions, B. Process Metallurgy and Materials Processing Science, 2010, 41(4): 824-832. [3] ELASSER A, CHOW T P. Silicon carbide benefits and advantages for power electronics circuits and systems[J]. Proceedings of the IEEE, 2002, 90(6): 969-986. [4] BUTTAY C, PLANSON D, ALLARD B, et al. State of the art of high temperature power electronics[J]. Materials Science and Engineering: B, 2011, 176(4): 283-288. [5] RHEE D M, HUANG H Y, AW J, et al. High Power SiC inverter module packaging solutions for junction temperature over 220 ℃[C]// 2014 IEEE 16th Electronics Packaging Technology Conference (Eptc), Singapore, 2014: 31-35. [6] JEONG H, MIN K D, LEE C J, et al. Mechanical reliability of Cu cored solder ball in flip chip package under thermal shock test[J]. Microelectron Reliability, 2020: 113918. [7] LI J J, YU X, SHI T L, et al. Low-temperature and low-pressure Cu-Cu bonding by highly sinterable Cu nanoparticle paste[J]. Nanoscale Res Lett, 2017, 12(1): 255. [8] LIU C M, LIN H W, CHU Y C, et al. Low-temperature direct copper-to-copper bonding enabled by creep on highly (111)-oriented Cu surfaces[J]. Scripta Materialia, 2014, 78-79: 65-68. [9] KHAZAKA R, MENDIZABAL L, HENRY D. Review on joint shear strength of nano-silver paste and its long-term high temperature reliability[J]. Journal of Electronic Materials, 2014, 43(7): 2459-2466. [10] KIM M S, NISHIKAWAA H. Silver nanoporous sheet for solid-state die attach in power device packaging[J]. Scripta materialia, 2014, 92: 43-46. [11] GAO R H, HE S L, LI J H, et al. Interfacial transformation of preoxidized Cu microparticles in a formic-acid atmosphere for pressureless Cu-Cu bonding[J]. Journal of Materials Science. Materials in Electronics, 2020, 31(17): 14635-14644. [12] LI J J, CHENG C L, SHI T L, et al. Surface effect induced Cu-Cu bonding by Cu nanosolder paste[J]. Materials Letters, 2016, 184: 193-196. [13] ZUO Y, SHEN J, HU Y D, et al. Improvement of oxidation resistance and bonding strength of Cu nanoparticles solder joints of Cu-Cu bonding by phosphating the nanoparticle[J]. Journal of Materials Processing Technology, 2018, 253: 27-33.
|