[1] BINDER D, SMITH E C, HOLMAN A B. Satellite anomalies from galactic cosmic rays[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2675-2680. [2] EDWARDS R, DYER C, NORMAND E. Technical standard for atmospheric radiation single event effects, (SEE) on avionics electronics[C]//2004 IEEE Radiation Effects Data Workshop, Atlanta, GA USA, 2004:1-5. [3] OLSEN J, BECHER P E, FYNBO P B, et al. Neutron-induced single event upsets in static RAMS observed a 10 km flight attitude[J]. IEEE Transactions on Nuclear Science, 1993, 40(2): 74-77. [4] TABER A, NORMAND E. Single event upset in avionics[J]. IEEE Transactions on Nuclear Science, 1993, 40(2): 120-126. [5] 杨善潮, 齐超, 刘岩, 等. 中子单粒子效应研究现状及进展[J]. 强激光与粒子束, 2015, 27(11): 110201. [6] DYER C, LEI F. Monte Carlo calculations of the influence on aircraft radiation environments of structures and solar particle events[J]. IEEE Transactions on Nuclear Science, 2001, 48(6): 1987-1995. [7] BAUMANN R C. Soft errors in advanced semiconductor devices-part I: the three radiation sources[J]. IEEE Transactions on Device and Materials Reliability, 2001, 1(1): 17-22. [8] Autran J L, Munteanu D, Roche P, et al. Soft-errors induced by terrestrial neutrons and natural alpha-particle emitters in advanced memory circuits at ground level[J]. Microelectronics Reliability, 2010, 50(9-11): 1822-1831. [9] AUTRAN J L, ROCHE P, SAUZE S, et al. Altitude and underground real-time SER characterization of CMOS 65 nm SRAM[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 2258-2266. [10] 张战刚, 叶兵, 姬庆刚, 等. 纳米级静态随机存取存储器的α粒子软错误机理研究[J]. 物理学报, 2020, 69(13): 201-209. [11] Xilinx. Device reliability report [EB/OL]. [2022-5-30]. https://docs.xilinx.com/v/u/en-US/ug116. [12] LESEA A, DRIMER S, FABULA J J, et al. The Rosetta experiment: Atmospheric soft error rate testing in differing technology FPGAs[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 317-328. [13] 谢文虎, 郑天池, 季振凯, 等. 基于亿门级UltraScale+架构FPGA的单粒子效应测试方法[J]. 电子与封装, 2022, 22(7): 070202. [14] NSENGIYUMVA P, MASSENGILL L W, ALLES M L, et al. Analysis of bulk FinFET structural effects on single-event cross sections[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 441-448. [15] EL-MAMOUNI F, ZHANG E X, PATE N D, et al. Laser- and heavy ion-induced charge collection in bulk FinFETs[J]. IEEE Transactions on Nuclear Science, 2011, 58(6): 2563-2569. [16] 刘保军, 杨晓阔, 陈名华. 4H-SiC基FinFET器件的单粒子瞬态效应研究[J]. 电子与封装, 2022, 22(11): 110401. [17] QIN J R, CHEN S M, CHEN J J. 3-D TCAD simulation study of the single event effect on 25 nm raised source-drain FinFET[J]. 中国科学(技术科学英文版), 2012(6): 1576-1580. [18] FANG Y P, OATES A S. Neutron-induced charge collection simulation of bulk FinFET SRAMs compared with conventional planar SRAMs[J]. IEEE Transactions on Device and Materials Reliability, 2011, 11(4): 551-554. [19] GORDON M S, GOLDHAGEN P, RODBELL K P, et al. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3427-3434. [20] SERRE S, SEMIKH S, UZNANSKI S, et al. Geant4 analysis of n-Si nuclear reactions from different sources of neutrons and its implication on soft-error rate[J]. IEEE Transactions on Nuclear Science, 2012, 59(4): 714-722. [21] 张战刚, 雷志锋, 童腾, 等. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比[J]. 物理学报, 2020, 69(5): 056101. [22] HSIEH C M, MURLEY P C, O'BRIEN R R. A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices[J]. IEEE Electron Device Letters, 1981, 2(4): 103-105. [23] 贺朝会, 李国政, 罗晋生, 等. CMOS SRAM单粒子翻转效应的解析分析[J]. 半导体学报(英文版), 2000, 21(2): 174-178. [24] CANNON E H, REINHARDT D D, GORDON M S, et al. SRAM SER in 90, 130 and 180 nm bulk and SOI technologies[C]// 2004 IEEE International Reliability Physics Symposium, Phoenix, AZ USA, 2004: 300-304. [25] 何安林, 郭刚, 陈力, 等. 65 nm 工艺 SRAM 低能质子单粒子翻转实验研究[J]. 原子能科学技术, 2014, 48(12): 2364-2369. [26] Xilinx. Balancing cost, power, and performance for I/O connectivity[EB/OL]. [2023-3-23]. https://china.xilinx.com/content/dam/xilinx/support/documents/product-briefs/spartan6-lowcost-product-brief.pdf. [27] Xilinx. Power vs. performance: The 90 nm inflection point[EB/OL]. [2023-3-23]. https://docs.xilinx.com/v/u/en-US/wp223. [28] Xilinx. Virtex-6 family overview[EB/OL]. [2023-3-23]. https://docs.xilinx.com/v/u/en-US/ds150. [29] Xilinx. The Xilinx Virtex-7 FPGA family: Unleashing performance and innovation with high-density, low-power 28 nm technology[EB/OL]. [2023-3-23]. https://china.xilinx.com/content/dam/xilinx/support/documents/product-briefs/virtex7-product-brief.pdf. [30] SAXENA P K, BHAT N. SEU reliability improvement due to source-side charge collection in the deep-submicron SRAM cell[J]. IEEE Transactions on Device and Materials Reliability, 2003, 3(1): 14-17. [31] 王强, 姜斌, 邓宏, 等. VLSI工艺中BPSG薄膜的研究[J]. 电子元件与材料, 2005, 24(1): 53-56. [32] 胡志良, 杨卫涛, 李永宏, 等. 应用中国散裂中子源9号束线端研究65 nm微控制器大气中子单粒子效应[J]. 物理学报, 2019, 68(23): 307-313. [33] WARREN K M, WELLER R A, MENDENHALL M H, et al. The contribution of nuclear reactions to heavy ion single event upset cross-section measurements in a high-density SEU hardened SRAM[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2125-2131. [34] WEN S J, WONG R, ROMAIN M, et al. Thermal neutron soft error rate for SRAMS in the 90 nm-45 nm technology range[C]// 2010 IEEE International Reliability Physics Symposium, Anaheim, CA USA, 2010: 1036-1039. [35] BAUMANN R C, SMITH E B. Neutron-induced boron fission as a major source of soft errors in deep submicron SRAM devices[C]// 2000 IEEE International Reliability Physics Symposium, San Jose, CA USA, 2002: 152-157. [36] Dubey A, Dubey M, Thakur S, et al. An approach to mitigate 10B generated soft error inSRAM[J]. International Journal of Engineering Research and Applications, 2012, 2(3): 1843-1849. [37] WROBEL F, GASIOT J, SAIGNé F, et al. Effects of atmospheric neutrons and natural contamination onadvanced microelectronic memories[J]. Applied Physics Letters, 2008, 93(6): 064105. [38] WROBEL F, GASIOT J, SAIGNE F. Hafnium and uranium contributions to soft error rate at ground level[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 3141-3145. [39] WROBEL F, SAIGNE F, GEDION M, et al. Radioactive nuclei induced soft errors at ground level[J]. IEEE Transactions on Nuclear Science, 2009, 56(6): 3437-3441. [40] KEREN E, GREENBERG S, YITZHAK N M, et al. Characterization and mitigation of single-event transients in Xilinx 45-nm SRAM-based FPGA[J]. IEEE Transactions on Nuclear Science, 2019, 66(6): 946-954. [41] GEDION M, WROBEL F, SAIGNé F, et al. Monte Carlo simulations to evaluate the contribution of Si bulk, interconnects, and packaging to alpha-soft error rates in advanced technologies[J]. IEEE Transactions on Nuclear Science, 2010, 57(6): 3121-3126. |