[1] 李其聪,曹可慰,吴怡然. 封装基板标准现状与发展方向[J]. 标准科学,2023(Z1):81-84. [2] PARK S Y, ON S Y, KIM J, et al. Electronic packaging enhancement engineered by reducing the bonding temperature via modified cure cycles[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 11024-11032. [3] MCCANN S, SMET V, SUNDARAM V, et al. Experimental and theoretical assessment of thin glass substrate for low warpage[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(2): 178-185. [4] 林佳,郑仰存,张亚平,等. 浅谈CTE及其对FC-BGA焊点可靠性的影响[J]. 印制电路信息,2013(11):31-33. [5] 桂萌琦,方志丹. 先进封装基板[J]. 微纳电子与智能制造,2021,3(1):98-103. [6] 林伟. 新一代层叠封装(PoP)的发展趋势及翘曲控制[J]. 中国集成电路,2014,23(3):46-52. [7] MIYATAKE M, MURAI H, TAKANEZAWA S, et al. Newly developed ultra low CTE materials for thin core PKG[C]// 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 2012: 1588-1592. [8] YAO X, XIAO Z Q, MING X F, et al. Warpage analysis of high-density FC-PBGA device during package process[C]// 2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 2018: 219-222. [9] 陈俊伟,王超凡,张章龙,等. 玻璃在5G通讯中的应用[J]. 电子元件与材料,2023,42(8):899-906. [10] SUZUKI F, SHIN T, BEHR A, et al. Investigation of a novel substrate core material designed to reduce package warpage and improve assembly-level reliability[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021: 748-753. [11] HAO J X, SHANG J, LIU X D, et al. Impact of substrate materials on packages warpage[C]// 2017 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, China, 2017: 764-768. [12] TONOUCHI S, MIZUSHIMA E, FUKUDA T, et al. Organic substrate material with low transmission loss and effective in suppressing package warpage for 5G application[C]// 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018: 28-32. [13] KOTAKE T, MURAI H, TAKANEZAWA S, et al. New ultra low CTE material to reduce the warpage of thinner PKG[C]// 2013 3rd IEEE CPMT Symposium Japan, Kyoto, Japan, 2013: 1-4. [14] 曾小亮,孙蓉,于淑会,等. 电子封装基板材料研究进展及发展趋势[J]. 集成技术,2014,3(6):76-83. [15] 师剑英. 浅析封装基板的设计开发[C]// 第十九届中国覆铜板技术研讨会,昆山,2018: 29-44. [16] 翟宁辉,蔡喜庆,赵富贵,等. 电子级萘基环氧树脂的制备及其构效关系研究[J]. 中国胶粘剂,2023,32(7):9-39. [17] 祝大同. 日本PCB基板材料用环氧树脂品种和技术方面的新进展[J]. 覆铜板资讯,2007(1):14-20. [18] 李文峰,王国建. 双马-三嗪树脂在CCL中的应用[C]// 第九届中国覆铜板市场技术研讨会,广州,2008. [19] 孙亮亮,张进,李亚婷,等.双马来酰亚胺树脂增韧改性方法研究进展[J]. 化学推进剂与高分子材料,2023,21(4):32-37. [20] 危良才. 浅谈电子级玻璃纤维布生产中的若干技术问题[J]. 覆铜板资讯,2012(3):36-40. [21] 张志坚,王富峰,杜家奎,等. 电子级玻璃纤维布表面处理研究[J]. 玻璃纤维,2017(2):6-8,13. [22] 祝大同. 高端覆铜板用三大关键原材料现况与性能需求[J]. 印制电路资讯,2020(5):24-32. [23] 方志丹,于中尧,武晓萌,等. FCBGA基板关键技术综述及展望[J]. 电子与封装,2023,23(3):030103. [24] 王纪冬. 超薄电子级玻璃纤维布生产的张力控制研究[C]// 第二十三届中国覆铜板技术研讨会,南通,2023. [25] 刘天成. 我国覆铜板的发展对电子玻璃纤维布的要求[C]// 2008年中国玻璃纤维应用市场高层论坛,德州,2008. [26] 陶应龙. 5G用电子级玻璃纤维布发展现状及趋势[C]// 2022年中国覆铜板行业高层论坛,东阳,2022. [27] LIN M Y, ZENG Y J, HWANG S J, et al. Warpage and residual stress analyses of post-mold cure process of IC packages[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(3/4): 1017-1039. [28] 高娜燕,陈锡鑫,仝良玉,等. 倒装焊塑封翘曲失效分析[J]. 电子产品可靠性与环境试验,2020,38(2):61-65. [29] 郭瑜,孙志礼,马小英,等. 考虑PCBA翘曲失效的回流焊工艺制程分析[J]. 兵器装备工程学报,2017,38(1):158-162. [30] SHAH D U, SCHUBEL P J. Evaluation of cure shrinkage measurement techniques for thermosetting resins[J]. Polymer Testing, 2010, 29(6): 629-639. [31] NAWAB Y, TARDIF X, BOYARD N, et al. Determination and modelling of the cure shrinkage of epoxy vinylester resin and associated composites by considering thermal gradients[J]. Composites Science and Technology, 2012, 73: 81-87. [32] CHO S, KO Y. Study on effects of nonlinear behavior characteristics of prepreg dielectric on warpage of substrate under laminating process[J]. Polymers, 2022, 14(3): 561. [33] ZHANG Q M, LO J C C, LEE S W R, et al. Characterization of orthotropic CTE of BT substrate for PBGA warpage evaluation[C]// 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 2016: 1312-1319. [34] CHEN P, JI Z L, LIU Y M, et al. Warpage prediction methodology of extremely thin package[C]// 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2017: 2080-2085. [35] BAEK J H, PARK D W, OH G H, et al. Effect of cure shrinkage of epoxy molding compound on warpage behavior of semiconductor package[J]. Materials Science in Semiconductor Processing, 2022, 148: 106758. [36] SHIRANGI M H. Simulation-based Investigation of interface delamination in plastic IC packages under temperature and moisture loading[D]. Goettingen: Cuvillier Verlag, 2010. [37] 侯耀伟,王喆,乔志壮,等. 超大尺寸芯片封装内应力的改善[J].半导体技术, 2022,47(6):498-502. [38] YOSHIDA A, WEN S M, LIN W, et al. A study on an Ultra Thin PoP using through mold via technology[C]// 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 2011: 1547-1551. [39] SUN Y F, PANG J H L. Study of optimal subset size in digital image correlation of speckle pattern images[J]. Optics and Lasers in Engineering, 2007, 45(9): 967-974. [40] SUTTON M A, MCNEILL S R, HELM J D, et al. Advances in two-dimensional and three-dimensional computer vision[J]. Topics in Applied Physics, 2000: 323-372. [41] PARK S, DHAKAL R, LEHMAN L, et al. Measurement of deformations in SnAgCu solder interconnects under in situ thermal loading[J]. Acta Materialia, 2007, 55(9): 3253-3260. [42] KIM Y, LEE H, ZHANG X, et al. Optimal material properties of molding compounds for MEMS package[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(10): 1589-1597. [43] KWAK J B. Experimental assessment of electronic package deformation using optical full-field deformation measurement system[D]. New York: State University of New York at Binghamton, 2010. [44] WANG Y Y, HASSELL P. Measurement of thermal deformation of BGA using phase-shifting shadow moiré[J]. Electronic/Numerical Mechanics in Electronic Packaging, 1998, 2: 32-39. |